传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2818

若gcd(x, y) = 1,则gcd(x * n, y * n) = n。那么,当y固定不变时,小于y且与y互质的个数为phi(y),所以此时对答案的贡献是phi(y) * 小于等于 n / y的素数的个数 * 2,最后乘2是因为数对是有序的。到最后,还要加上小于等于n的素数个数,因为(p, p)这种x = y的数对并没有计算进去。

#include <cstdio>

const int maxn = 10000005;

int n, prime[700000], tot, phi[maxn], mx, now;
char book[maxn];
long long ans; int main(void) {
scanf("%d", &n);
for (int i = 2; i <= n; ++i) {
if (!book[i]) {
prime[++tot] = i;
phi[i] = i - 1;
}
for (int j = 1; j <= tot; ++j) {
if (i * prime[j] > n) {
break;
}
book[i * prime[j]] = 1;
if (i % prime[j] == 0) {
phi[i * prime[j]] = phi[i] * prime[j];
break;
}
else {
phi[i * prime[j]] = phi[i] * (prime[j] - 1);
}
}
} int lmt = n >> 1;
now = tot;
for (int i = 2; i <= lmt; ++i) {
mx = n / i;
while (mx < prime[now]) {
--now;
}
ans += phi[i] * now;
}
printf("%lld\n", (ans << 1) + tot);
return 0;
}

  

_bzoj2818 Gcd【线性筛法 欧拉函数】的更多相关文章

  1. 积性函数&线性筛&欧拉函数&莫比乌斯函数&因数个数&约数个数和

    只会搬运YL巨巨的博客 积性函数 定义 积性函数:对于任意互质的整数a和b有性质f(ab)=f(a)f(b)的数论函数. 完全积性函数:对于任意整数a和b有性质f(ab)=f(a)f(b)的数论函数 ...

  2. The Euler function(线性筛欧拉函数)

    /* 题意:(n)表示小于n与n互质的数有多少个,给你两个数a,b让你计算a+(a+1)+(a+2)+......+b; 初步思路:暴力搞一下,打表 #放弃:打了十几分钟没打完 #改进:欧拉函数:具体 ...

  3. GCD nyoj 1007 (欧拉函数+欧几里得)

    GCD  nyoj 1007 (欧拉函数+欧几里得) GCD 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 The greatest common divisor ...

  4. UVA 11426 GCD - Extreme (II) (欧拉函数+筛法)

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中 ...

  5. UVA 11424 GCD - Extreme (I) (欧拉函数+筛法)

    题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 此 ...

  6. Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss ...

  7. HDU 1695 GCD (容斥原理+欧拉函数)

    题目链接 题意 : 从[a,b]中找一个x,[c,d]中找一个y,要求GCD(x,y)= k.求满足这样条件的(x,y)的对数.(3,5)和(5,3)视为一组样例 . 思路 :要求满足GCD(x,y) ...

  8. UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)

    UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...

  9. luogu2658 GCD(莫比乌斯反演/欧拉函数)

    link 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 1<=N<=10^7 (1)莫比乌斯反演法 发现就是YY的GCD,左转YY的GCD ...

随机推荐

  1. SQLAlchemy的group_by和order_by的区别

    1.官网解释: group_by(*criterion) apply one or more GROUP BY criterion to the query and return the newly ...

  2. Spring之IOC篇章具体解释

    专题一   IOC 1.接口以及面向接口编程 a.结构设计中,分清层次以及调用关系,每层仅仅向外(或者上层)提供一组功能接口,各层间仅依赖接口而非实现类这样做的优点是,接口实现的变动不影响各层间的调用 ...

  3. Solidworks drwdot文件如何打开,如何制作Solidworks工程图模板

    1 直接把这个文件拖放进Solidworks窗口   2 文件-保存图纸格式,另存为模板(slddrt文件)   3 搜索"Solidworks工程图如何使用,替换图纸格式模板文件.doc& ...

  4. cocos2dx 制作单机麻将(五)

    cocos2dx 制作单机麻将(五) 麻将逻辑6 最基础的4人麻将逻辑(轮流循环出牌, 之前学的都能用上  跑起来了!!!) 最基础的麻将逻辑 依据自己须要 设置麻将人数GAME_PLAYER 基本流 ...

  5. Lucene中TokenStream,Tokenizer,TokenFilter,TokenStreamComponents与Analyzer

    TokenStream extends AttributeSource implements Closeable: incrementToken,end,reset,close Tokenizer直接 ...

  6. [Sciter] 1. 创建最简单的Sciter项目

    一些函数 sciter::debug_output_console _; 程序运行时自动启动一个控制台窗口,通过在_tiscript_中调用stdout.println来输出调试信息 SciterSe ...

  7. [IT学习]Python如何处理异常特殊字符

    欢迎访问www.cnblogs.com/viphhs A byte of Python<输入与输出>一节中有一个处理回文的小例子(io_input.py).作者留了个思考题. 如何将标点去 ...

  8. eclipse中将web项目部署到tomcat

    eclipse中将web项目部署到tomcat. myeclipse部署WEB项目到tomcat比较方便,但eclipse貌似默认是不会替你将web自动部署到tomcat下的.你Run as该web项 ...

  9. 【bzoj4320】ShangHai2006 Homework

    若Y小于等于sqrt(300000),暴力,对所有的插入的数都更新mn[i]. 若Y大于sqrt(300000),枚举kY,用并查集维护>=i的第一个数,这样只支持删除操作是O(1),然后倒着枚 ...

  10. VS2010调用外部webservice

    vs2010怎么调用web服务webservice方法,以vs2010为例.Vs的各个版本的此项功能操作基本一致. 工具/原料 vs2010 在“服务引用设置”对话框中,单击“添加 Web 引用”. ...