spoj DYNALCA - Dynamic LCA
http://www.spoj.com/problems/DYNALCA/
此题link、cut要求不能换根,当然也保证link时其中一个点必定已经是根。
方法:
void link(Node *x,Node *y)
{
access(x);splay(x);
x->fa=y;
}
void cut(Node *x)
{
access(x);splay(x);
x->ch[]->fa=NULL;x->ch[]=NULL;
}
曾经的错误思路:
void cut(Node *x)
{
access(x->fa);x->fa=NULL;
}
因为此时x->fa不一定是splay维护的序列上x的前一个元素(只是splay上x的父亲罢了,在实际序列中它们的关系可以任意)
求lca?x,y的lca就是先access(x)后,在access(y)的过程中,“最后一次虚边变成实边的位置”。实际也就是access(y)的过程中最后一次的lst
#include<cstdio>
#include<algorithm>
using namespace std;
namespace LCT
{
struct Node
{
Node *ch[],*fa;
bool rev;
int num;
void upd() {}
void pd()
{
if(rev)
{
swap(ch[],ch[]);
if(ch[]) ch[]->rev^=;
if(ch[]) ch[]->rev^=;
rev=;
}
}
}nodes[];
int mem;
Node *getnode()
{
return nodes+(mem++);
}
bool isroot(Node *x)
{
return (!x->fa)||((x->fa->ch[]!=x)&&(x->fa->ch[]!=x));
}
bool gson(Node *o) {return o==o->fa->ch[];}
void rotate(Node *o,bool d)
{
Node *k=o->ch[!d];if(!isroot(o)) o->fa->ch[gson(o)]=k;
o->ch[!d]=k->ch[d];k->ch[d]=o;
o->upd();k->upd();
k->fa=o->fa;o->fa=k;if(o->ch[!d]) o->ch[!d]->fa=o;
}
Node *st[];int top;
void solvetag(Node *o)
{
while(!isroot(o)) st[++top]=o,o=o->fa;
st[++top]=o;
while(top) st[top--]->pd();
}
void splay(Node *o)
{
solvetag(o);
Node *fa,*fafa;bool d1,d2;
while(!isroot(o))
{
fa=o->fa;d1=(o==fa->ch[]);
if(isroot(fa)) rotate(fa,d1);
else
{
fafa=o->fa->fa;d2=(fa==fafa->ch[]);
if(d1==d2) rotate(fafa,d1),rotate(fa,d1);
else rotate(fa,d1),rotate(fafa,d2);
}
}
}
void access(Node *o)
{
for(Node *lst=NULL;o;lst=o,o=o->fa)
{
splay(o);
o->ch[]=lst;o->upd();
}
}
Node *gtop(Node *o)
{
access(o);splay(o);
for(;o->ch[];o=o->ch[],o->pd());
splay(o);return o;
}
void mtop(Node *o) {access(o);splay(o);o->rev^=;}
void link(Node *x,Node *y)
{
access(x);splay(x);
x->fa=y;
}
//void splay(Node *o,Node *rt)
//{
// if(isroot(rt)) splay(o);
// bool d=gson(rt);Node *t=rt->fa;
// t->ch[d]=NULL;rt->fa=NULL;
// splay(o);
// t->ch[d]=o;o->fa=t;
//}
void cut(Node *x)
{
access(x);splay(x);
x->ch[]->fa=NULL;x->ch[]=NULL;
}
Node *lca(Node *x,Node *y)
{
access(x);Node *lst=NULL;
for(;y;lst=y,y=y->fa)
{
splay(y);
y->ch[]=lst;y->upd();
}
return lst;
}
}
LCT::Node *nd[];
int n,q;char tmp[];
int main()
{
int i,x,y;
scanf("%d%d",&n,&q);
for(i=;i<=n;i++)
{
nd[i]=LCT::getnode();
nd[i]->num=i;
}
while(q--)
{
scanf("%s",tmp);
switch(tmp[])
{
case 'i':
scanf("%d%d",&x,&y);
LCT::link(nd[x],nd[y]);
break;
case 'u':
scanf("%d",&x);
LCT::cut(nd[x]);
break;
case 'c':
scanf("%d%d",&x,&y);
printf("%d\n",LCT::lca(nd[x],nd[y])->num);
break;
}
}
return ;
}
spoj DYNALCA - Dynamic LCA的更多相关文章
- SP8791 DYNALCA - Dynamic LCA 解题报告
SP8791 DYNALCA - Dynamic LCA 有一个森林最初由 \(n (1 \le n \le 100000)\) 个互不相连的点构成 你需要处理以下操作: link A B:添加从顶点 ...
- 【题解】Luogu SP8791 DYNALCA - Dynamic LCA
原题传送门 这题用Link-Cut-Tree解决,Link-Cut-Tree详解 这道题的难点就在如何求LCA: 我们珂以先对其中一个点进行access操作,然后对另一个点进行access操作,因为L ...
- SP8791 DYNALCA - Dynamic LCA
\(\color{#0066ff}{ 题目描述 }\) 有一个森林最初由 n (\(1 \le n \le 100000\))n(\(1\leq n\leq 100000\)) 个互不相连的点构成 你 ...
- CodeForcesGym 100512D Dynamic LCA
Dynamic LCA Time Limit: 2000ms Memory Limit: 262144KB This problem will be judged on CodeForcesGym. ...
- SPOJ 10628 Count on a tree(Tarjan离线LCA+主席树求树上第K小)
COT - Count on a tree #tree You are given a tree with N nodes.The tree nodes are numbered from 1 to ...
- 【SPOJ】10628. Count on a tree(lca+主席树+dfs序)
http://www.spoj.com/problems/COT/ (速度很快,排到了rank6) 这题让我明白了人生T_T 我知道我为什么那么sb了. 调试一早上都在想人生. 唉. 太弱. 太弱. ...
- Bzoj 2588: Spoj 10628. Count on a tree 主席树,离散化,可持久,倍增LCA
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2588 2588: Spoj 10628. Count on a tree Time Limit ...
- BZOJ 2588: Spoj 10628. Count on a tree( LCA + 主席树 )
Orz..跑得还挺快的#10 自从会树链剖分后LCA就没写过倍增了... 这道题用可持久化线段树..点x的线段树表示ROOT到x的这条路径上的权值线段树 ----------------------- ...
- spoj COT - Count on a tree (树上第K小 LCA+主席树)
链接: https://www.spoj.com/problems/COT/en/ 思路: 首先看到求两点之前的第k小很容易想到用主席树去写,但是主席树处理的是线性结构,而这道题要求的是树形结构,我们 ...
随机推荐
- javaEE之------ApectJ的切面技术===标签
如今比較流行了aop技术之中的一个========标签 实现步骤: 一,导入aop标签 方法,打开aop包.里面就有. watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5 ...
- Spring中AOP的使用
问题:什么是AOP? 答:AOP基本概念:Aspect-Oriented Programming,面向方面编程的简称,Aspect是一种新的模块化机制.用来描写叙述分散在对象.类或方法中的横切关注点( ...
- 2016/04/29 ①cms分类 ② dede仿站制作 步骤 十个步骤 循环生成菜单 带子菜单的菜单 标签 栏目 栏目内容列表 内容图片列表
cms 系统还有: phpcms 企业站 Xiaocms 织梦 企业站 wordpress (博客) Ecshop 商城 Ecmall 多用户 Discms 记账 方维 订餐 团购 CMS ...
- Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content
Content-Type https://tools.ietf.org/html/rfc7231#section-3.1.1.5 https://tools.ietf.org/html/rfc7231 ...
- 加载之ready和onload
页面加载完成有两种事件,一是ready,表示文档结构已经加载完成(不包含图片等非文字媒体文件),二是onload,指示页面包含图片等文件在内的所有元素都加载完成. 真不知道这个标题该怎么取,暂时就先凑 ...
- The android gradle plugin version 2.3.0-beta2 is too old, please update to the latest version.
编译项目的时候,报如下错误: Error:(, ) A problem occurred evaluating project ':app'. > Failed to apply plugin ...
- 实现静默安装APK的方法
需要满足的条件: 内置到ROM.即APK包的安装位置是/system/app下. 下面以 test.apk 为例,演示这个操作.需要准备一台已经获得 Root 权限的手机. 1.通过 USB 连接手机 ...
- C语言算法
选择排序法:用第一个数分别和后面的数比较 冒泡排序法:相邻的两个数比较 01.单词首字母大写&统计单词个数 02: 编写一个函数int pieAdd(int n),计算1!+2!+3!+……+ ...
- x86 linux 裁剪过程中能正常跑起来的必要配置项
A .选中Executable file formats/Emulations ---> Kernel support for ELFbinaries -----加载运行rootfs 中的程序. ...
- zoj3777(状态压缩)
题目阐述: 给定n个座位,n个人,每个人可以做n个位置中的任意一个,P[i][j]代表第i个人做第j个位置获得的分数,求有多少种排列方式使得获得的分数大于等于M. 这道题跟数位dp的思想很像,都是穷举 ...