Morris InOrder Traverse Binary Tree 无需使用递归和栈
今天在切leetcode的时候看到一个Morris算法,用来中序遍历二叉树,非递归,O(1)空间。觉得很强大。记录一下。
基本思想是利用了Threaded Binary Tree。
步骤如下:
- current节点设置为root。如果current不为空,到2,否则返回;
- 如果current没有左子树,输出current的值,current等于current.right;
- 如果current有左子树,首先找到current节点的precedent,也就是该节点左子树中最最右边那个节点。然后把最最右边这个节点的右link指向当前节点。如下图。
e.g. 当current是7的时候,我们找到4,并人为地添加一个link到current(绿色的link)。
current等于current.left;回到2.
有同学说,如果遍历到结点4,按照算法(4没有左子树),不是就又回到了7么,然后循环怎么结束呢?假设如果通过4回到了7,再找寻找7的precendent的过程中,我们会发现环,7->3->4->7(7的左子树中最最右边的节点是自己),那么我们知道7的左子树已经遍历完成,输出7,然后继续遍历7的右子树。
我们的代码如下:
首先假设有一个TreeNode数据结构是这样的。
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) { val = x; }
}
然后是遍历:
public ArrayList<Integer> inorderMorrisTraversal(TreeNode root){
sequence = new ArrayList<Integer>();
TreeNode current = root;
TreeNode pre = null;
while(current != null){
if(current.left == null){
sequence.add(current.val);
current = current.right;
}else {
pre = current.left;
//找到当前节点的前任,也就是它左子树的最右节点
while(pre.right != null && pre.right != current){
pre = pre.right;
}
if(pre.right == null){//我们遇到的左子树
pre.right = current;
current = current.left;
}else {//说明pre.right == current,构成了一个环,说明之前已经遍历过了current的左子树,可以输出current了。
pre.right = null;
sequence.add(current.val);
current = current.right;
}
}
}
return sequence;
我们以上面的例子track一下这个过程,首先current指向root节点7. root节点左子树非空,通过一路向右,找到7的前任4,建立绿色的link。
然后继续到3,在左子树中一路向右,找到2.
继续current = current.left,发现2没有左子树了,输出2.
然后current = current.right,current指向3. 注意到这是第二次指向3. 然后按照算法去寻找3的前任,当然这一回就不是2了,而是3本身。那么,我们需要删除掉这个环,也就2->3的link。并且输出current 的值3.
然后继续current到3的左子树。剩下的过程如下图。
总结下:
首先发明这个算法的人肯定是对那个什么Threaded Binary Tree烂熟于心啊;其次,对inorder遍历也是理解透彻啊。。。
再次,这人思维肯定特清晰。
Reference: http://www.geeksforgeeks.org/inorder-tree-traversal-without-recursion-and-without-stack/
Morris InOrder Traverse Binary Tree 无需使用递归和栈的更多相关文章
- CSharp Algorithm - How to traverse binary tree by breadth (Part II)
/* Author: Jiangong SUN */ Here I will introduce the breadth first traversal of binary tree. The pri ...
- Post Order traverse binary tree using non-recursive way
Process analysis Stack = 5, Push 3, Stack = 5, 3. Pre = 5 Current = 3, Pre = 5, Push 2 to the st ...
- [LeetCode] Binary Tree Preorder Traversal 二叉树的先序遍历
Given a binary tree, return the preorder traversal of its nodes' values. For example:Given binary tr ...
- [LeetCode] Binary Tree Postorder Traversal 二叉树的后序遍历
Given a binary tree, return the postorder traversal of its nodes' values. For example: Given binary ...
- [Algorithm] Construct a Binary Tree and Binary Search
function createNode(value) { return { value, left: null, right: null }; } function BinaryTree(val) { ...
- [LeetCode] 145. Binary Tree Postorder Traversal 二叉树的后序遍历
Given a binary tree, return the postorder traversal of its nodes' values. For example: Given binary ...
- [Leetcode][JAVA] Recover Binary Search Tree (Morris Inorder Traversal)
Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without changing ...
- (二叉树 递归) leetcode94. Binary Tree Inorder Traversal
Given a binary tree, return the inorder traversal of its nodes' values. Example: Input: [1,null,2,3] ...
- (二叉树 递归) leetcode 105. Construct Binary Tree from Preorder and Inorder Traversal
Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...
随机推荐
- 去掉CSS中的表达式Expression
在IE中,CSS是可以嵌入js表达式的,可以在CSS类中定义,但是将含有表达CSS类从DOM对象中移除,样式表达式是不会失效的. 经过研究找到了答案,需要使用js调用style对象的removeExp ...
- Python 字符串切片
#-*- coding:utf-8 -*- #字符串切片 names = "abcdefgh" ''' 切片语法 names[起始位置:终止位置:步长] 起始位置:即字符串的下标, ...
- ElasticSearch使用代码
package elasticsearch01; import static org.junit.Assert.*; import java.util.HashMap; import java.uti ...
- 【转】C# 二维码生成
/// <summary> /// 含有QR码的描述类和包装编码和渲染 /// </summary> public class QRCodeHelper { /// <s ...
- snmp trap编写
1.MIB库查看net-snmp的安装目录./usr/share/snmp/mibs目录下: NET-SNMP-EXAMPLES-MIB.mib本件部分内容如下: netSnmpExampleHear ...
- 关于多层for循环迭代的效率优化问题
关于多层for循环迭代的效率优化问题 今天笔试的时候遇到这么一道题目 说有上面这么循环嵌套 .问怎么优化 并说明原因. for(int i = 0 ; i < 1000 ;i++){ ...
- c++ list 合并list
1.参考 http://www.cplusplus.com/reference/list/list/ 2.合并 主要有两个函数:splice()和merge()splice()有三种调用形式:第一种: ...
- c++ mktime()
今天联系写一个日历的程序,需要算出月份中的第一天是星期几,用到了mktime()这个函数,感觉这个函数挺有用的,分享给大家. 原型:time_t mktime(struct tm *) 其中的tm结构 ...
- windows,cmd中,如何切换到磁盘的根目录下
需求描述: 在windows的cmd中操作,有的时候也会遇到切换了很多的目录,然后需要切换到根目录的情况 操作过程: 1.通过cd \的方式,切换回当前磁盘的根目录下 备注:未切换之前,在Driver ...
- 关于Java 枚举类型的自定义属性
package com.cpic.test;/** * 关于枚举类型自定义属性 * */public enum Provious { ANHUI("皖", 1),BAIJING(& ...