数据结构——平衡二叉树(AVLTree)
3.平衡二叉树
平衡二叉树,又称AVL树,它是一种特殊的二叉排序树。
3.1 平衡二叉树的四种自旋
这个左旋、右旋,在方向上和我观念里的是相反的。
查了之后才知道:
1、外侧插入:LL、RR,都是在最边边上。
2、内侧插入:LR、RL,往里面来了些。
(1)LL旋转和RR旋转:
void RR_Rotate(AVLTree *root){ AVLTreeNode* rchild = (*root)->Right; (*root)->Right = rchild->Left; rchild->Left = *root; *root = rchild; } void LL_Rotate(AVLTree *root) { AVLTreeNode* lchild = (*root)->Left; (*root)->Left = lchild->Right; lchild->Right = *root; *root = lchild; }
(2)LR,RL型旋转(插入的节点在CL上 还是CR上是没有影响的)
LR型旋转图解
void LR_Rotate(AVLTree *root) { RR_Rotate(&(*root)->Left); return LL_Rotate(root); } void RL_Rotate(AVLTree *root) { LL_Rotate(&(*root)->Right); RR_Rotate(root); }
小结:几个子树在水平位置上顺序是不会变的!根节点和根节点的子树在水平上的逻辑位置也是不会变的。
3.2 平衡二叉树的插入
插入算法就是出现不平衡状态时,判断需要使用哪种旋转方式来使得二叉树保持平衡:
AVLTree InsertAVLTree(AVLTree root, int x) { if (root == NULL) { root = new AVLTreeNode; root->Left = NULL; root->Right = NULL; root->data = x; return root; } if (x > root->data) { root->Right = InsertAVLTree(root->Right, x); //递归返回插入位置的父节点或者祖父……,如果失去了平衡 ) { //如果插入的值大于,当前节点的左孩子节点,说明该节点是插在root的右子树上的 if (x > root->Left->data) RR_Rotate(&root); else RL_Rotate(&root); } } else if (x < root->data) { root->Left = InsertAVLTree(root->Left, x); ) { if (x < root->Left->data) LL_Rotate(&root); else LR_Rotate(&root); } } else { cout << "the number is already included." << endl; return NULL; } return root; }
3.3 平衡二叉树的删除
之前写过二叉排序树的节点的删除的话,这里会好写很多,就是多出来一个判断从哪个子树删除节点的问题。
void AVLTreeDel(AVLTree *root, int data) { if (!*root) { cout << "delete failed" << endl; return; } AVLTreeNode *p = *root; if (data == p->data) { //左右子树都非空 if (p->Left && p->Right) { //在高度更大的那个子树上进行删除操作 //进左子树,右转到底,进右子树,左转到底,转弯碰壁,杀孩子。 if (height(p->Left) > height(p->Right)) { AVLTreeNode *pre=NULL,*q = p->Left; if (!q->Right) q->Right = p->Right; else { while (q->Right) { pre = q; q = q->Right; } pre->Right = q->Left; q->Left = p->Left; q->Right = p->Right; } *root = q; } else { AVLTreeNode *pre = NULL, *q = p->Right; if (!q->Left) q->Left = p->Left; else { while (q->Left) { pre = q; q = q->Left; } pre->Left = q->Right; q->Left = p->Left; q->Right = p->Right; } *root=q; } } else (*root) = (*root)->Left ? (*root)->Left : (*root)->Right; delete p; } else if (data < p->data){//要删除的节点在左子树中 //在左子树中进行递归删除 AVLTreeDel(&(*root)->Left, data); //判断是否仍然满足平衡条件 ){ //如果当前节点右孩子的左子树更高 if (height(p->Right->Left) > height(p->Right->Right)) RL_Rotate(root); else RR_Rotate(root); } } else{ AVLTreeDel(&(*root)->Right, data); ) { if (height((*root)->Left->Left) > height((*root)->Left->Right)) LL_Rotate(root); else LR_Rotate(root); } } }
https://www.2cto.com/kf/201702/556250.html
完整代码(2019.1.20):
#pragma once #include "top.h" typedef BTreeNode AVLTreeNode, *AVLTree; void RR_Rotate(AVLTree *root){ AVLTreeNode* Right = (*root)->Right; (*root)->Right = Right->Left; Right->Left = *root; *root = Right; } void LL_Rotate(AVLTree *root) { AVLTreeNode* Left = (*root)->Left; (*root)->Left = Left->Right; Left->Right = *root; *root = Left; } void LR_Rotate(AVLTree *root) { RR_Rotate(&(*root)->Left); return LL_Rotate(root); } void RL_Rotate(AVLTree *root) { LL_Rotate(&(*root)->Right); RR_Rotate(root); } AVLTree AVLTreeInsert(AVLTree root, int x) { if (root == NULL) { root = new AVLTreeNode; root->Left = NULL; root->Right = NULL; root->data = x; return root; } if (x > root->data) { root->Right = AVLTreeInsert(root->Right, x); //递归返回插入位置的父节点或者祖父……,如果失去了平衡 ) { //如果插入的值大于,当前节点的右孩子节点,说明该节点是插在root的右子树上的 //if (x > root->Left->data) RR_Rotate(&root);不能保证该节点一定有左子树 if (x > root->Right->data)RR_Rotate(&root); else RL_Rotate(&root); } } else if (x < root->data) { root->Left = AVLTreeInsert(root->Left, x); ) { if (x < root->Left->data) LL_Rotate(&root); else LR_Rotate(&root); } } else { cout << "the number is already included." << endl; return NULL; } return root; } AVLTree AVLTreeCreat(int *a, int length) { AVLTree T = NULL; ; i < length; i++) { T = AVLTreeInsert(T, a[i]); } return T; } AVLTreeNode* AVLFind(AVLTree T, int x) { AVLTreeNode *p = T; while (p) { if (x == p->data) break; p = x > p->data ? p->Right : p->Left; } return p; } AVLTree AVLMax(AVLTree p) { if (!p) return NULL; if (p->Right == NULL) return p; return AVLMax(p->Right); } AVLTree AVLMin(AVLTree p) { if (!p) return NULL; if (p->Left == NULL) return p; return AVLMin(p->Left); } void AVLTreeDel(AVLTree *root, int data) { if (!*root) { cout << "delete failed" << endl; return; } AVLTreeNode *p = *root; if (data == p->data) { //左右子树都非空 if (p->Left && p->Right) { //在高度更大的那个子树上进行删除操作 //进左子树,右转到底,进右子树,左转到底,转弯碰壁,杀孩子。 if (height(p->Left) > height(p->Right)) { AVLTreeNode *pre=NULL,*q = p->Left; if (!q->Right) q->Right = p->Right; else { while (q->Right) { pre = q; q = q->Right; } pre->Right = q->Left; q->Left = p->Left; q->Right = p->Right; } *root = q; } else { AVLTreeNode *pre = NULL, *q = p->Right; if (!q->Left) q->Left = p->Left; else { while (q->Left) { pre = q; q = q->Left; } pre->Left = q->Right; q->Left = p->Left; q->Right = p->Right; } *root=q; } } else (*root) = (*root)->Left ? (*root)->Left : (*root)->Right; delete p; } else if (data < p->data){//要删除的节点在左子树中 //在左子树中进行递归删除 AVLTreeDel(&(*root)->Left, data); //判断是否仍然满足平衡条件 ){ //如果当前节点右孩子的左子树更高 if (height(p->Right->Left) > height(p->Right->Right)) RL_Rotate(root); else RR_Rotate(root); } } else{ AVLTreeDel(&(*root)->Right, data); ) { if (height((*root)->Left->Left) > height((*root)->Left->Right)) LL_Rotate(root); else LR_Rotate(root); } } } void checkCreat() { ; ); ; i < length; i++) { cout << a[i] << ","; } cout << endl; AVLTree T = AVLTreeCreat(a, length); int t = rand() % length; AVLTreeDel(&T, a[t]); ; i++) { a[i] = a[i + ]; } Preorder(T); cout << endl; Inorder(T); cout << endl; Postorder(T); cout << endl; free(a); }
数据结构——平衡二叉树(AVLTree)的更多相关文章
- 什么是泛型?,Set集合,TreeSet集合自然排序和比较器排序,数据结构-二叉树,数据结构-平衡二叉树
==知识点== 1.泛型 2.Set集合 3.TreeSet 4.数据结构-二叉树 5.数据结构-平衡二叉树 ==用到的单词== 1.element[ˈelɪmənt] 要素 元素(软) 2.key[ ...
- 数据结构-平衡二叉树 旋转过程平衡因子分析 c和java代码实现对比
平衡二叉搜索树(Self-balancing binary search tree)又被称为AVL树(有别于AVL算法),且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且 ...
- java——平衡二叉树 AVLTree、AVLMap、AVLSet
平衡二叉树:对于任意一个节点,左子树和右子树的高度差不能超过1 package Date_pacage; import java.util.ArrayList; public class AVLTre ...
- 平衡二叉树(AVLTREE,双链表实现)
首先说下好久没更新了,最近打游戏和工作都有点多,o(^▽^)o. 写这个AVL发现自己的代码风格好差,尤其是变量命名这块,后来意识到了,想去改,但是太多了,改了几个就不想改了,做这个是记录下自己的成长 ...
- Java数据结构——平衡二叉树的平衡因子(转自牛客网)
若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性.首先要找出插入新结点后失去平衡的最小子树根结点的指针.然后再调整这个子树中有关结点之间的链接关系,使之成为新的平衡子树.当失去平衡的最小子树被 ...
- 大话数据结构—平衡二叉树(AVL树)
平衡二叉树(Self-Balancing Binary Search Tree/Height-Balanced Binary Search Tree),是一种二叉排序树,当中每个节点的左子树和右子树的 ...
- 数据结构-平衡二叉树Java实现
1,Node.java package com.cnblogs.mufasa.BalanceBinaryTree; public class Node { Node parent; Node left ...
- JavaScript数据结构——树的实现
在计算机科学中,树是一种十分重要的数据结构.树被描述为一种分层数据抽象模型,常用来描述数据间的层级关系和组织结构.树也是一种非顺序的数据结构.下图展示了树的定义: 在介绍如何用JavaScript实现 ...
- 20162325 金立清 S2 W8 C17
20162325 2017-2018-2 <程序设计与数据结构>第8周学习总结 教材学习内容概要 二叉查找树是一棵二叉树,对于其中的每个结点,左子树上的元素小于父结点的值,而右子树上的元素 ...
随机推荐
- java中的奇葩 “:”
一.经常使用java的人有没有发现java也可以将汉字作为标识符出现呢? 在Java语言中,标识符是以字母.下划线(_)或美元符($)开头,由字母.数字.下划线(_)或美元符($)组成的字符串 真的输 ...
- final关键字的特点
1.这个关键字是一个修饰符,可以修饰类,方法,变量. 2.被final修饰的类是一个最终类,不可以被继承. 3.被final修饰的方法是一个最终方法,不可以被覆盖. 4.被final修饰的变量是一个常 ...
- axios中的qs
qs是一个npm仓库所管理的包,可通过npm install qs命令进行安装. 1. qs.parse()将URL解析成对象的形式 const Qs = require('qs'); let url ...
- Bookmarklet编写指南
作者: 阮一峰 日期: 2011年6月11日 前一段日子,我写了两个Bookmarklet----"短网址生成"和"短网址还原". 它们用起来很方便,除了我本人 ...
- java截取字符串
public class Temp { public static void main(String[] args) { String a="dsadgafa34"; System ...
- html5 css选择器 井号, 句点的区别
一.理解CSS的样式组成CSS里的样式表是有规则组成的,每条规则有三个部分组成:1.选择器(如下面例子中的:"body"),告诉浏览器文档的哪个部分受规则影响:2.属性(如实例中的 ...
- js Object 的冻结、密封、扩展的相同以及不同点
Object.freezed() 冻结 检查函数 Object.isFrozen(obj) Object.seal() 密封 检查函数 Object.isSealed(obj) Object.pr ...
- svn add @2x image 文件
svn add `svn status . | grep "^?" | awk '{print $2"@"}'`
- Architecture And Framework
高屋建瓴 From Up to Down. Outside into inside. Interface-Oriented Framework with dynamic configuration. ...
- 算法之求质数(Java语言)
质数(Prime number) 又称素数,指在的自然数中,除了1和该数自身外,无法被其他自然数整除的数(也可定义为只有1与该数本身两个因数的数). 算法原理 验证一个数字 n 是否为素数的一种简单但 ...