【BZOJ1951】[SDOI2010]古代猪文
【BZOJ1951】[SDOI2010]古代猪文
题面
题解
题目实际上是要求
$ G^{\sum d|n\;C_n^d}\;mod \; 999911659 $
而这个奇怪的模数实际上是个素数,由欧拉定理
$ G^{\sum d|n\;C_n^d}\;mod \; 999911659=G^{\sum d|n\;C_n^d\;mod\;99911658}\;mod \; 999911659 $
主要是解决
$ \sum d|n\;C_n^d\;mod\;999911658 $
注意到
$ 999911658=2×3×4679×35617 $
所以可以对每个质因数枚举约束,用$Lucas$求组合数
最后$CRT$合并即可,注意要特判
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
const ll Mod = 999911658;
ll N, G, fac[50005], ans[10], b[10] = {0, 2, 3, 4679, 35617};
ll fpow(ll x, ll y, ll p) {
ll res = 1;
while (y) {
if (y & 1ll) res = res * x % p;
x = x * x % p;
y >>= 1ll;
}
return res;
}
void init (ll p) { fac[0] = 1; for (ll i = 1; i <= p; i++) fac[i] = i * fac[i - 1] % p; }
ll C(ll n, ll m, ll p) {
if (n < m) return 0;
return fac[n] * fpow(fac[m], p - 2, p) % p * fpow(fac[n - m], p - 2, p) % p;
}
ll Lucas(ll n, ll m, ll p) {
if (!m || !n) return 1;
return Lucas(n / p, m / p, p) * C(n % p, m % p, p) % p;
}
ll CRT() {
ll res = 0;
for (int i = 1; i <= 4; i++)
res = (res +
ans[i] * (Mod / b[i]) % Mod *
fpow(Mod / b[i], b[i] - 2, b[i])
% Mod) % Mod;
return res;
}
int main () {
cin >> N >> G;
if (G % (Mod + 1) == 0) return puts("0") & 0;
for (int p = 1; p <= 4; p++) {
init(b[p]);
for (int i = 1; i * i <= N; i++) {
if (N % i == 0) {
ans[p] = (ans[p] + Lucas(N, i, b[p])) % b[p];
if (i * i != N) ans[p] = (ans[p] + Lucas(N, N / i, b[p])) % b[p];
}
}
}
printf("%lld\n", fpow(G, CRT(), Mod + 1));
return 0;
}
【BZOJ1951】[SDOI2010]古代猪文的更多相关文章
- [bzoj1951] [Sdoi2010]古代猪文 费马小定理+Lucas定理+CRT
Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...
- BZOJ1951[SDOI2010]古代猪文
Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...
- BZOJ1951:[SDOI2010]古代猪文(Lucas,CRT)
Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...
- BZOJ1951 [Sdoi2010]古代猪文 【费马小定理 + Lucas定理 + 中国剩余定理 + 逆元递推 + 扩展欧几里得】
题目 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那 ...
- BZOJ1951 [Sdoi2010]古代猪文 中国剩余定理 快速幂 数论
原文链接http://www.cnblogs.com/zhouzhendong/p/8109156.html 题目传送门 - BZOJ1951 题意概括 求 GM mod 999911659 M=∑i ...
- bzoj千题计划323:bzoj1951: [Sdoi2010]古代猪文(Lucas+CRT+欧拉定理)
https://www.lydsy.com/JudgeOnline/problem.php?id=1951 先欧拉降幂 然后模数质因数分解 分别计算组合数的结果,中国剩余定理合并 #include&l ...
- bzoj1951 [Sdoi2010]古代猪文 ——数论综合
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1951 题意就是要求 G^( ∑(k|n) C(n,k) ) % p,用费马小定理处理指数,卢 ...
- 【BZOJ1951】[Sdoi2010]古代猪文 Lucas定理+CRT
[BZOJ1951][Sdoi2010]古代猪文 Description 求$X=\sum\limits_{d|n}C_n^d$,$Ans=G^X (\mod 999911659)$. Input 有 ...
- 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理
[bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...
随机推荐
- TTransport 概述
TTransport TTransport主要作用是定义了IO读写操作以及本地缓存的操作,下面来看TIOStreamTransport是如何实现的. public abstract class TTr ...
- BZOJ2208:[JSOI2010]连通数(DFS)
Description Input 输入数据第一行是图顶点的数量,一个正整数N. 接下来N行,每行N个字符.第i行第j列的1表示顶点i到j有边,0则表示无边. Output 输出一行一个整数,表示该图 ...
- 【[HEOI2016/TJOI2016]排序】
巧妙思路题 有一个重要的思想就是把大于某一个数的数都变成\(1\),小于这个数的都变成\(0\),这个只有\(0\)和\(1\)的序列就很好处理了 由于我们只需要在最后求出一个位置上是什么数就可以了, ...
- 3、Dubbo-环境搭建
官方推荐使用 Zookeeper 注册中心 3.1).[windows]-安装zookeeper 开发中均在Linux中安装!!! 1.下载zookeeper 网址 https://archive.a ...
- idea 注册码(2019)
MTW881U3Z5-eyJsaWNlbnNlSWQiOiJNVFc4ODFVM1o1IiwibGljZW5zZWVOYW1lIjoiTnNzIEltIiwiYXNzaWduZWVOYW1lIjoiI ...
- PAT——1024. 科学计数法
科学计数法是科学家用来表示很大或很小的数字的一种方便的方法,其满足正则表达式[+-][1-9]"."[0-9]+E[+-][0-9]+,即数字的整数部分只有1位,小数部分至少有1位 ...
- css z-index之object flash层级问题
<object type="application/x-shockwave-flash" data="flash文件路径" style="z-i ...
- CC2540 低功耗串口, POWER_SAVING 模式 下 串口 0 的使用
低功耗 模式 下 使用 串口 , 因为 PM2 或者 PM3 状态下 32M晶振 是不工作 的,根据手册得知没有32M晶振, 串口是不能工作的,但是可以使用 外部中断,因此,我把 串口的接收引脚 ...
- vue项目中分享到朋友圈,调用微信接口
虽然微信提供了jssdk,不代表可以点击按钮进行分享到朋友圈,是需要微信自带的浏览器右上角进行分享.手机浏览器需要浏览器支持分享到朋友圈的分享机制. 微信jssdk地址: https://mp.wei ...
- 修改Mac系统host文件
第一步.在终端里面输入 sudo -i 获取临时获取管理员权限,会提示你输入密码,就是启动的密码. 第二步.输入 vi /etc/hosts 前面的vi是编辑器,当然也可以换用其他的,例如上面的na ...