Portal-->bzoj3669

Solution

​   愉悦智力康复ing

​​   这题的话有两个比较关键的地方

​​   首先是答案肯定是原图的某个生成树上的一条路径,那么我们考虑怎么来找这个生成树,因为关键值有两个,所以我们这里可以采取这样的一个方式:先对其中一个关键值排序

​​   我们先将所有的边按照\(a\)值排序,然后按顺序加边,如果说当前这条边连接的两个点已经连通了,那么我们要考虑删掉一条边或者干脆不加这条边

​   这里我们可以用一个贪心的思想,删边的话肯定是删当前的边中\(b\)最大的那个(如果要加的那条边的\(b\)是最大的那么我们就不加这条边),如果说我们加了这条边并且\(1\)和\(n\)连通了,那么可以用当前最大的\(b\)+当前的\(a\)来更新答案(因为\(a\)是升序排列的,所以当前的\(a\)一定是最大的)

​​   接着是第二部分,如何维护\(b\)的最大值?

​​   又要删边又要加边的维护的又是链的数据,那当然是LCT咯qwq,但是因为这个地方我们是要维护边权,所以我们将每一条边变成一个点,然后其他的就全部都是常规操作了ovo

​​   好像是比较套路的一题qwq

​  

​​   代码大概长这个样子

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mp make_pair
#define Pr pair<int,int>
using namespace std;
const int N=50010,M=100010,L=N+M;
const int inf=2147483647;
struct Rec{
int a,b,x,y,id;
friend bool operator <(Rec x,Rec y){return x.a<y.a;}
}a[M];
int n,m,ans;
namespace Lct{/*{{{*/
int ch[L][2],fa[L],mx[L],loc[L],rev[L];
int b[L];
int tot;
bool isroot(int x){return ch[fa[x]][0]!=x&&ch[fa[x]][1]!=x;}
int which(int x){return ch[fa[x]][1]==x;}
void reverse(int x){
swap(ch[x][0],ch[x][1]);
rev[x]^=1;
}
void pd(int x){
if (rev[x]){
if (ch[x][0]) reverse(ch[x][0]);
if (ch[x][1]) reverse(ch[x][1]);
rev[x]=0;
}
}
void pushdown(int x){
if (!isroot(x)) pushdown(fa[x]);
pd(x);
}
void pushup(int x){
mx[x]=b[x]; loc[x]=x;
if (ch[x][0]){
if (mx[ch[x][0]]>mx[x])
mx[x]=mx[ch[x][0]],loc[x]=loc[ch[x][0]];
}
if (ch[x][1]){
if (mx[ch[x][1]]>mx[x])
mx[x]=mx[ch[x][1]],loc[x]=loc[ch[x][1]];
}
}
void rotate(int x){
int dir=which(x),f=fa[x];
if (!isroot(f)) ch[fa[f]][which(f)]=x;
if (ch[x][dir^1]) fa[ch[x][dir^1]]=f;
fa[x]=fa[f];
ch[f][dir]=ch[x][dir^1];
ch[x][dir^1]=f; fa[f]=x;
pushup(f);
pushup(x);
}
void splay(int x){
pushdown(x);
for (int f=fa[x];!isroot(x);f=fa[x]){
if (!isroot(f))
rotate(which(f)==which(x)?f:x);
rotate(x);
}
}
void access(int x){
for (int last=0;x;last=x,x=fa[x]){
splay(x);
ch[x][1]=last;
pushup(x);
}
}
void make_rt(int x){
access(x);
splay(x);
reverse(x);
}
bool connected(int x,int y){
if (x==y) return true;
make_rt(x);
access(y);
splay(y);
return fa[x];
}
bool check(int x,int y){
make_rt(x);
access(y);
splay(y);
return ch[y][0]==x;
}
void cut(int x,int y){
//printf("Cut %d %d\n",x,y);
make_rt(x);
access(y);
splay(y);
fa[x]=0;
ch[y][0]=0;
pushup(y);
}
Pr query(int x,int y){
make_rt(x);
access(y);
splay(y);
return mp(mx[y],loc[y]);
}
void link(int x,int y){
//printf("Link %d %d\n",x,y);
make_rt(y);
fa[y]=x;
pushup(x);
}
void Link(int x,int y,int bian,int vala){
int tmp;
if (x==y) return;
if (connected(x,y)){
tmp=query(x,y).second;
if (b[bian]<b[tmp]){
cut(a[tmp-n].x,tmp);
cut(a[tmp-n].y,tmp);
link(x,bian);
link(y,bian);
}
}
else{
link(x,bian);
link(y,bian);
}
if (connected(1,n)){
tmp=query(1,n).first;
ans=min(ans,tmp+vala);
}
}
}/*}}}*/
void build(){
sort(a+1,a+1+m);
for (int i=1;i<=m;++i){
a[i].id=i+n;
Lct::b[a[i].id]=a[i].b;
Lct::pushup(a[i].id);
}
}
void solve(){
ans=inf;
int tmp=0;
for (int i=1;i<=m;++i){
Lct::Link(a[i].x,a[i].y,a[i].id,a[i].a);
//printf("%d\n",ans);
}
if (ans!=inf) printf("%d\n",ans);
else printf("-1\n");
} int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%d%d",&n,&m);
for (int i=1;i<=m;++i){
scanf("%d%d%d%d\n",&a[i].x,&a[i].y,&a[i].a,&a[i].b);
}
build();
//for (int i=1;i<=m;++i) printf("%d %d %d %d\n",a[i].x,a[i].y,a[i].a,a[i].b);
solve();
}

【bzoj3669】魔法森林的更多相关文章

  1. BZOJ-3669 魔法森林 Link-Cut-Tree

    意识到背模版的重要性了,记住了原理和操作,然后手打模版残了..颓我时间...... 3669: [Noi2014]魔法森林 Time Limit: 30 Sec Memory Limit: 512 M ...

  2. [BZOJ3669]魔法森林

    Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...

  3. 洛谷2387 BZOJ3669魔法森林题解

    题目链接 BZ链接 这道题被很多人用spfa水了过去,表示很... 其实spfa很好卡,这组数据可以卡掉大多数spfa 链接:密码:rjvk 这里讲一下LCT的做法 我们按照a将边排序,然后依次添加 ...

  4. 【BZOJ3669】【Noi2014】魔法森林(Link-Cut Tree)

    [BZOJ3669][Noi2014]魔法森林(Link-Cut Tree) 题面 题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n ...

  5. bzoj3669: [Noi2014]魔法森林 lct版

    先上题目 bzoj3669: [Noi2014]魔法森林 这道题首先每一条边都有一个a,b 我们按a从小到大排序 每次将一条路劲入队 当然这道题权在边上 所以我们将边化为点去连接他的两个端点 当然某两 ...

  6. [bzoj3669][Noi2014]魔法森林_LCT_并查集

    魔法森林 bzoj-3669 Noi-2014 题目大意:说不明白题意系列++……题目链接 注释:略. 想法:如果只有1个参量的话spfa.dij什么的都上来了. 两个参量的话我们考虑,想将所有的边按 ...

  7. 【BZOJ3669】[Noi2014]魔法森林 LCT

    终于不是裸的LCT了...然而一开始一眼看上去这是kruskal..不对,题目要求1->n的路径上的每个点的两个最大权值和最小,这样便可以用LCT来维护一个最小生成路(瞎编的...),先以a为关 ...

  8. BZOJ3669[Noi2014]魔法森林——kruskal+LCT

    题目描述 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节点1,隐士则住 ...

  9. 【NOI2014】【BZOJ3669】【UOJ#3】魔法森林

    我学会lct辣 原题: 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为 1…n1…n,边标号为1…m1…m.初始时小E ...

  10. BZOJ3669:[NOI2014]魔法森林——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=3669 https://www.luogu.org/problemnew/show/P2387 为了得 ...

随机推荐

  1. HttpServletResponse 之 sendError( )

    直接返回http 401状态,提示重新登录 response.sendError(401, "当前账户未登录或会话失效,请重新登录!) HTTP状态码列表: 100Continue继续.客户 ...

  2. asp.net mvc access数据库操作

    连接access数据库其实也简单,只要按照mvc的模式来就可以,遵循c v约定就可以 既然渲染试图是强类型,那么取得的数据就转换成强类型,其他一切和asp.net操作一样 DB mydb = new ...

  3. 学习GIT 你只要这一篇(转)

    http://blog.csdn.net/afei__/article/details/51476529 安装之后第一步 安装 Git 之后,你要做的第一件事情就是去配置你的名字和邮箱,因为每一次提交 ...

  4. loadrunner socket协议问题归纳(2)

    编写步骤 1.建立与服务端的连接 rc=lrs_create_socket(“socket0”,”TCP”,”LocalHost=0”,”RemoteHost=127.0.0.1:8808”,LrsL ...

  5. 作业 20181120-3 Beta发布

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2408 小组介绍 组长:付佳 组员:张俊余 李文涛 孙赛佳 田良 于洋 段 ...

  6. "Hello World"团队召开的第三周第七次会议

    今天是我们团队“Hello World!”团队召开的第三周的第七次会议.博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.Todo List 六.会议照片 七.燃尽图 一.会议时 ...

  7. Macbook Pro开机黑屏了。

    问题描述:点了appstore的更新,然后重启黑屏.(说明:黑屏是屏幕没亮:灰屏是屏幕亮了是灰黑色的.) 黑屏问题大,灰屏问题小. 开机按option没反应的跳到步骤四 一.数据 苹果电脑黑屏了,想搞 ...

  8. CCF——折点计数201604-1

    问题描述 给定n个整数表示一个商店连续n天的销售量.如果某天之前销售量在增长,而后一天销售量减少,则称这一天为折点,反过来如果之前销售量减少而后一天销售量增长,也称这一天为折点.其他的天都不是折点.如 ...

  9. 结对项目——fault,error,failure的程序设计

    一.结对编程内容: 1.不能触发Fault. 2.触发Fault,但是不触发Error. 3.触发Error,但不触发Failure. 二.结对编程人员 1.周宗耀.周浩: 2.结对截图: 三.结对项 ...

  10. node.js入门(一)

    NodeJS是一个使用了Google高性能V8引擎的服务器端JavaScript实现.它提供了一个(几乎)完全非阻塞I/O栈,与JavaScript提供的闭包和匿名函数相结合,使之成为编写高吞吐 量网 ...