读博从报道那天算起到现在已经3个多月了,这段时间以来和博导总共见过两次面,寥寥数语的见面要我对剩下的几年读书生活没有了太多的期盼,有些事情一直想去做却总是打不起来精神,最后挣扎一下还是决定把和博导开学后的交代记录下来,这也算是为日后留档吧。

交代如下:

1. 以月为单位,读文章,阐述原理,读一些有关联性的文章;

2. 综述报告, 要表现出问题的现状,并预测未来的发展方向;

3. 选题报告, 要写哪些题目可以写,哪里题目值得研究,要有条理,其原因用一、二、三点这样的标号来表示;

4. 实现报告, 要写明实验具体是如何做的;

5. 技术报告。

以上便是博导第一次组会所交代的,组会结束后便对读博这事情没什么幻想了,或许按照交代认真完成我也能在规定年限之内毕业,不过这也许真的只是或许。

由于一些原因导致本人读博陷入了只能靠自己的境地,于是自己便查找了一下本方向的一些重要期刊和会议,为自己日后查找文献、选定研究课题做铺垫,具体如下。

首先要说的一定是CCF推荐的会议及期刊,具体网址如下:

http://www.ccf.org.cn/xspj/sjk/sjwj/nrjs/

以下推荐的期刊和会议都是所在实验室比较青睐的一些,由此做了一些了解。

1.

期刊名:Neuro computing

出版社: Elsevier

 

http://dblp.uni-trier.de/db/journals/ijon/

CCF推荐的C类期刊,2017年中科院分区为大类一区,小类二区。

对于该期刊给出一些网友给出的数据:

平均审稿速度网友分享经验:平均5.7个月
来源Elsevier官网:平均15.5周

在线出版周期来源Elsevier官网:平均21周

2016-2017最新影响因子 3.317
2016-2017自引率 30.10%

平均录用比例  网友分享经验:80%

2016-2017 最新影响因子 3.317

数据来源:

http://www.letpub.com.cn/index.php?journalid=6141&page=journalapp&view=detail

该论文现在有大量的国人投稿,虽然有被国人灌水的嫌疑,都是该刊从录用周期及录用比例上来看还都不错,作为CCF推荐期刊,同时兼具SCI检索3.317的影响因子和大类二分区的表现来看该刊是国内机器学习和AI方向博士毕业生迈向毕业大门的一条不错的路径,至少我所在实验室的博士生大部分都考这个期刊来毕业。该期刊的投稿情况看很多人都是在3个月内有结果,速度快录用率高,但是也有网友表示整个流程超过半年,8个月,10个月的也有一些,但是比例较少,只有极个别网友表示超过一年,在此建议大家如果投该期刊在3个月左右被录用是极好的事情,如果半年还没结果可以考虑再等等,如果比较急的情况如就等一篇SCI期刊论文来毕业的情况在超过6个月甚至8个月以上还没有回信的话估计你可以考虑撤下改投,不过综合说这个期刊从性价比来看性能还是很不错的。

对于该期刊的评价同时给出小木虫上的数据,原址:http://muchong.com/bbs/journal.php?view=detail&jid=6169

投稿录用比例: 86% (计算公式:参与点评网友投稿录用人数/总点评网友人数×100%)
审稿速度: 平均 5 个月的审稿周期(非官方数据)

给出一个我比较认可的评价,如下:

 2.

上个推荐的期刊 neuro computing 录用率高,审稿周期短(重点),是新手入门的一个高性能推荐,同时也是Phd candidate 保毕业的好选择。下面推荐一款录用率高但是审稿周期长的一款产品,NEURAL NETWORKS 。

小木虫上的评价:

http://muchong.com/bbs/journal.php?view=detail&jid=6154

审稿速度: 平均 16 个月的审稿周期(非官方数据)

投稿录用比例: 100% (计算公式:参与点评网友投稿录用人数/总点评网友人数×100%)

LetPub上的评价:http://www.letpub.com.cn/index.php?page=journalapp&view=detail&journalid=6126

2016-2017最新影响因子 5.287
2016-2017自引率 10.60%
平均审稿速度 网友分享经验:平均12.0个月
来源Elsevier官网:平均10.5周
平均录用比例 网友分享经验:较易
在线出版周期 来源Elsevier官网:平均7.1周

该刊综合评价  审稿周期较长,但是录用率较高,大类分区为二类,人工智能小区分类也为2类, 同时该刊也是 CCF 推荐的B类期刊, 对于这个级别的期刊虽然审稿周期长了一些大约一年左右,但是其录用比例及难易程度还是很不错的,适用于那些读博士读到中期的人群,既不是十分着急出结果同时对期刊级别还有一些要求的人还是性价比很不错的。

 3.

简称:  TNNLS

第三个推荐的期刊是  IEEE Transactions on Neural Networks and Learning Systems

LetPub上的信息:

http://www.letpub.com.cn/index.php?page=journalapp&view=detail&journalid=8837

2016-2017最新影响因子 6.108
2016-2017自引率 7.60%

平均审稿速度网友分享经验:一般,3-8周

小木虫上的评价:

http://muchong.com/bbs/journal.php?view=detail&jid=3422

投稿录用比例: 100% (计算公式:参与点评网友投稿录用人数/总点评网友人数×100%)
审稿速度: 平均 8 个月的审稿周期(非官方数据)

该刊是大类小类都是一区的期刊,CCF推荐期刊中属于B类期刊,从投稿周期和录用比例上来看还都是不错的,国内学者投稿较多,比较适用于CS方向博士读到中后期的投稿期刊,性价比比较不错。

小木虫上有网友分享过两份经历,如下:

http://muchong.com/html/201007/2248702.html

http://muchong.com/bbs/viewthread.php?tid=4934708

 4. 

简称: TKDE

第四个推荐的期刊是  CCF 推荐的A类期刊, 是数据挖掘方向的期刊。

TKDE
 
IEEE Transactions on Knowledge and Data Engineering
 

LetPub对该刊的评价:

http://www.letpub.com.cn/index.php?page=journalapp&view=detail&journalid=3399

2016-2017最新影响因子 3.438
2016-2017自引率 6.20%
平均审稿速度 网友分享经验:一般,3-8周
平均录用比例 网友分享经验:较易

网友评价:

小木虫上对该刊的评价:

http://muchong.com/bbs/journal.php?view=detail&jid=3414

投稿录用比例: 33% (计算公式:参与点评网友投稿录用人数/总点评网友人数×100%)
审稿速度: 平均 6 个月的审稿周期(非官方数据)

该期刊 属于CCF 推荐的顶刊,但是中科院评级大类2区,该刊在数据领域口碑还是不错,该刊平均审稿周期还是可以的,录用比例也是较高的,但是个别网友反映该期刊的整个流程全部下来要1年左右,对于该刊的性价比来说还是很高的,推荐读博中后期的选手入手,该刊的较多投稿都是从ccf推荐会议上发表的论文通过扩展以后发表的,如果手中的论文积累还可以的话推荐选择,前期是对时间不过分要求,毕竟很多人要等一年的时间才能走完全部流程。

5.

KNOWLEDGE-BASED SYSTEMS

该期刊 并非 CCF 推荐的期刊,网友有一些评价该刊为水刊,可能比CCF推荐中的被网友评价为水刊的还有好重一些的期刊。

小木虫上对刊物的评价:

http://muchong.com/bbs/journal.php?view=detail&jid=5522

投稿录用比例: 77% (计算公式:参与点评网友投稿录用人数/总点评网友人数×100%)
审稿速度: 平均 5.54902 个月的审稿周期(非官方数据)

某网友分享的投稿日志:

该刊审稿速度快,录用比例高,是很不错的选择,对于希望赶紧出成果的CS Phd student 来说是个很好的选择,不过该刊影响因子变化幅度稍大,口碑上被网友批的较狠,但是毕竟大家还是看论文发表的大区及影响因子的,所以综合来看还是不错的,适合新手或是对时间及录用率要求较高的人群。

LetPub上的评价:

http://www.letpub.com.cn/index.php?journalid=5495&page=journalapp&view=detail

2016-2017最新影响因子 4.529
2016-2017自引率 23.40%
平均审稿速度 网友分享经验:平均7.8个月
平均录用比例 网友分享经验:85%

网友评价:

影响因子已经飚过 2 了!可能是自引不少。 华人 发文占一半以上, 可以考虑考虑试试。-----------------------------------------我觉得华人做machine learning和knowledge based system这一块本来就做得比较好,做的人也多,当然文章就多了,其实大可不必考虑什么华人不华人的。然后同觉得主编人挺好,意见给的都很详细,很负责。关于审稿速度我的感觉是挺快,去年从投稿到录用不到7个月,但是我实验室

最后,附上一篇对该刊投稿的记时:

http://blog.sciencenet.cn/blog-431053-733297.html

以下的期刊及会议不具体介绍了,不过都是一些比较推荐的选择:

期刊:

ARTIFICIAL INTELLIGENCE                (AIJ)

Pattern Analysis and Machine Intelligence        (PAMI)

IEEE INTELLIGENT SYSTEMS

会议:

International Joint Conference on Artificial Intelligence      (IJCAI)

Association for the Advancement of Artificial Intelligence   (AAAI)

International Conference on Machine Learning                 (ICML)

SDM

ICDM

KDD

PKDD

ECML

附录:

=============================================================

中国计算机学会推荐国际学术刊物

(数据库/数据挖掘/内容检索)

A类

B类

C类

中国计算机学会推荐国际学术会议

(数据库/数据挖掘/内容检索)

A类

B类

C类

中国计算机学会推荐国际学术刊物

(人工智能)

A类

B类

C类

中国计算机学会推荐国际学术会议

(人工智能)

A类

B类

C类

Machine Learning 方向读博的一些重要期刊及会议 && 读博第一次组会时博导的交代的更多相关文章

  1. Machine Learning - week 2 - Multivariate Linear Regression

    Multiple Features 上一章中,hθ(x) = θ0 + θ1x,表示只有一个 feature.现在,有多个 features,所以 hθ(x) = θ0 + θ1x1 + θ2x2 + ...

  2. Paper慢慢读 - AB实验人群定向 Double Machine Learning

    Hetergeneous Treatment Effect旨在量化实验对不同人群的差异影响,进而通过人群定向/数值策略的方式进行差异化实验,或者对实验进行调整.Double Machine Learn ...

  3. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  4. 机器学习(Machine Learning)&深度学习(Deep Learning)资料

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...

  5. 机器学习(Machine Learning)&深入学习(Deep Learning)资料

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林. ...

  6. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  7. What skills are needed for machine learning jobs

    What skills are needed for machine learning jobs?机器学习工作必须技能 原文: http://www.quora.com/Machine-Learnin ...

  8. 机器学习系统设计(Building Machine Learning Systems with Python)- Willi Richert Luis Pedro Coelho

    机器学习系统设计(Building Machine Learning Systems with Python)- Willi Richert Luis Pedro Coelho 总述 本书是 2014 ...

  9. 学习笔记之机器学习(Machine Learning)

    机器学习 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0 机器学习是人工智能的一个分 ...

随机推荐

  1. cocos代码研究(13)Widget子类EditBox学习笔记

    理论基础 一个用来输入文本的类,继承自 Widget , 以及 IMEDelegate. 代码部分 Public枚举类型 enum KeyboardReturnType键盘的返回键类型. enum I ...

  2. mysql索引之哈希索引

    哈希算法 哈希算法时间复杂度为O(1),且不只存在于索引中,每个数据库应用中都存在该数据结构. 哈希表 哈希表也为散列表,又直接寻址改进而来.在哈希的方式下,一个元素k处于h(k)中,即利用哈希函数h ...

  3. 什么是ASCII码文本文件

    标准ASCII码方式(也称文本方式)存储的文件,更确切地说,英文.数字等字符存储的是ASCII码.文本文件中除了存储文件有效字符信息(包括能用ASCII码字符表示的回车.换行等信息)外,不能存储其他任 ...

  4. 常用php操作redis命令整理(四)SET类型

    SADD 将一个或多个member元素加入到集合key当中.(从左侧插入,最后插入的元素在0位置),集合中已经存在TK 则返回false,不存在添加成功 返回true <?php var_dum ...

  5. linux第八周

    进程的切换和系统的一般执行过程 一.进程调度与进程切换 1.不同的进程有不同的调度需求 第一种分类: I/O密集型(I/O-bound)频繁的进行I/O通常会花费很多时间等待I/O操作的完成CPU密集 ...

  6. Dijkstra算法补分

    要求 Dijkstra算法,求解附图顶点A的单源最短路径 在纸上画出求解过程,上传截图(注意图上要有自己的学号和姓名) 过程

  7. asp.net web api的源码

    从安装的NuGet packages逆向找回去 <package id="Microsoft.AspNet.WebApi.Core" version="5.2.7& ...

  8. ccf 行车路线

    问题描述 小明和小芳出去乡村玩,小明负责开车,小芳来导航. 小芳将可能的道路分为大道和小道.大道比较好走,每走1公里小明会增加1的疲劳度.小道不好走,如果连续走小道,小明的疲劳值会快速增加,连续走s公 ...

  9. Windows自带计算器快捷键

    今天乱翻的时候发现了这个东西,下面就是各个快捷键: (以下功能在计算器面板上均能找到) 按键 功能 F9 \(-/+\) R 1/x @ \(\sqrt{}\) Ctrl+Shift+D 清除历史记录 ...

  10. APP AutoTestCaseID

    public class AutoTestCaseID { ElementExist el = new ElementExist(); static AutoTestExcelFile ft = ne ...