Quick guide for converting from JAGS or BUGS to NIMBLE
Converting to NIMBLE from JAGS, OpenBUGS or WinBUGS
NIMBLE is a hierarchical modeling package that uses nearly the same modeling language as the popular MCMC packages WinBUGS, OpenBUGS and JAGS. NIMBLE makes the modeling language extensible — you can add distributions and functions — and also allows customization of MCMC or other algorithms that use models. Here is a quick summary of steps to convert existing code from WinBUGS, OpenBUGS or JAGS to NIMBLE. For more information, see examples on r-nimble.org or the NIMBLE User Manual.
Main steps for converting existing code
These steps assume you are familiar with running WinBUGS, OpenBUGS or JAGS through an R package such as R2WinBUGS, R2jags, rjags, or jagsUI.
- Wrap your model code in nimbleCode({}), directly in R.
- This replaces the step of writing or generating a separate file containing the model code.
- Alternatively, you can read standard JAGS- and BUGS-formatted code and data files using
readBUGSmodel. - Provide information about missing or empty indices
- Example: If x is a matrix, you must write at least x[,] to show it has two dimensions.
- If other declarations make the size of x clear, x[,] will work in some circumstances.
- If not, either provide index ranges (e.g. x[1:n, 1:m]) or use the dimensions argument to nimbleModel to provide the sizes in each dimension.
- Choose how you want to run MCMC.
- Use nimbleMCMC() as the just-do-it way to run an MCMC. This will take all steps to
set up and run an MCMC using NIMBLE’s default configuration. - To use NIMBLE’s full flexibility: build the model, configure and build the MCMC, and compile both the model and MCMC. Then run the MCMC via runMCMC or by calling the run function of the compiled MCMC. See the NIMBLE User Manual to learn more about what you can do.
See below for a list of some more nitty-gritty additional steps you may need to consider for some models.
Example: An animal abundance model
This example is adapted from Chapter 6, Section 6.4 of Applied Hierarchical Modeling in Ecology: Analysis of distribution, abundance and species richness in R and BUGS. Volume I: Prelude and Static Models by Marc Kéry and J. Andrew Royle (2015, Academic Press). The book’s web site provides code for its examples.
Original code
The original model code looks like this:
cat(file = "model2.txt","
model {
# Priors
for(k in 1:3){ # Loop over 3 levels of hab or time factors
alpha0[k] ~ dunif(-10, 10) # Detection intercepts
alpha1[k] ~ dunif(-10, 10) # Detection slopes
beta0[k] ~ dunif(-10, 10) # Abundance intercepts
beta1[k] ~ dunif(-10, 10) # Abundance slopes
} # Likelihood
# Ecological model for true abundance
for (i in 1:M){
N[i] ~ dpois(lambda[i])
log(lambda[i]) <- beta0[hab[i]] + beta1[hab[i]] * vegHt[i]
# Some intermediate derived quantities
critical[i] <- step(2-N[i])# yields 1 whenever N is 2 or less
z[i] <- step(N[i]-0.5) # Indicator for occupied site
# Observation model for replicated counts
for (j in 1:J){
C[i,j] ~ dbin(p[i,j], N[i])
logit(p[i,j]) <- alpha0[j] + alpha1[j] * wind[i,j]
}
} # Derived quantities
Nocc <- sum(z[]) # Number of occupied sites among sample of M
Ntotal <- sum(N[]) # Total population size at M sites combined
Nhab[1] <- sum(N[1:33]) # Total abundance for sites in hab A
Nhab[2] <- sum(N[34:66]) # Total abundance for sites in hab B
Nhab[3] <- sum(N[67:100])# Total abundance for sites in hab C
for(k in 1:100){ # Predictions of lambda and p ...
for(level in 1:3){ # ... for each level of hab and time factors
lam.pred[k, level] <- exp(beta0[level] + beta1[level] * XvegHt[k])
logit(p.pred[k, level]) <- alpha0[level] + alpha1[level] * Xwind[k]
}
}
N.critical <- sum(critical[]) # Number of populations with critical size
}")
Brief summary of the model
This is known as an "N-mixture" model in ecology. The details aren't really important for illustrating the mechanics of converting this model to NIMBLE, but here is a brief summary anyway. The latent abundances N[i] at sites i = 1...M are assumed to follow a Poisson. The j-th count at the i-th site, C[i, j], is assumed to follow a binomial with detection probability p[i, j]. The abundance at each site depends on a habitat-specific intercept and coefficient for vegetation height, with a log link. The detection probability for each sampling occasion depends on a date-specific intercept and coefficient for wind speed. Kéry and Royle concocted this as a simulated example to illustrate the hierarchical modeling approaches for estimating abundance from count data on repeated visits to multiple sites.
NIMBLE version of the model code
Here is the model converted for use in NIMBLE. In this case, the only changes to the code are to insert some missing index ranges (see comments).
library(nimble)
Section6p4_code <- nimbleCode( {
# Priors
for(k in 1:3) { # Loop over 3 levels of hab or time factors
alpha0[k] ~ dunif(-10, 10) # Detection intercepts
alpha1[k] ~ dunif(-10, 10) # Detection slopes
beta0[k] ~ dunif(-10, 10) # Abundance intercepts
beta1[k] ~ dunif(-10, 10) # Abundance slopes
} # Likelihood
# Ecological model for true abundance
for (i in 1:M){
N[i] ~ dpois(lambda[i])
log(lambda[i]) <- beta0[hab[i]] + beta1[hab[i]] * vegHt[i]
# Some intermediate derived quantities
critical[i] <- step(2-N[i])# yields 1 whenever N is 2 or less
z[i] <- step(N[i]-0.5) # Indicator for occupied site
# Observation model for replicated counts
for (j in 1:J){
C[i,j] ~ dbin(p[i,j], N[i])
logit(p[i,j]) <- alpha0[j] + alpha1[j] * wind[i,j]
}
} # Derived quantities; unnececssary when running for inference purpose
# NIMBLE: We have filled in indices in the next two lines.
Nocc <- sum(z[1:100]) # Number of occupied sites among sample of M
Ntotal <- sum(N[1:100]) # Total population size at M sites combined
Nhab[1] <- sum(N[1:33]) # Total abundance for sites in hab A
Nhab[2] <- sum(N[34:66]) # Total abundance for sites in hab B
Nhab[3] <- sum(N[67:100])# Total abundance for sites in hab C
for(k in 1:100){ # Predictions of lambda and p ...
for(level in 1:3){ # ... for each level of hab and time factors
lam.pred[k, level] <- exp(beta0[level] + beta1[level] * XvegHt[k])
logit(p.pred[k, level]) <- alpha0[level] + alpha1[level] * Xwind[k]
}
}
# NIMBLE: We have filled in indices in the next line.
N.critical <- sum(critical[1:100]) # Number of populations with critical size
})
Simulated data
To carry this example further, we need some simulated data. Kéry and Royle provide separate code to do this. With NIMBLE we could use the model itself to simulate data rather than writing separate simulation code. But for our goals here, we simply copy Kéry and Royle's simulation code, and we compact it somewhat:
# Code from Kery and Royle (2015)
# Choose sample sizes and prepare obs. data array y
set.seed(1) # So we all get same data set
M <- 100 # Number of sites
J <- 3 # Number of repeated abundance measurements
C <- matrix(NA, nrow = M, ncol = J) # to contain the observed data # Create a covariate called vegHt
vegHt <- sort(runif(M, -1, 1)) # sort for graphical convenience # Choose parameter values for abundance model and compute lambda
beta0 <- 0 # Log-scale intercept
beta1 <- 2 # Log-scale slope for vegHt
lambda <- exp(beta0 + beta1 * vegHt) # Expected abundance # Draw local abundance
N <- rpois(M, lambda) # Create a covariate called wind
wind <- array(runif(M * J, -1, 1), dim = c(M, J)) # Choose parameter values for measurement error model and compute detectability
alpha0 <- -2 # Logit-scale intercept
alpha1 <- -3 # Logit-scale slope for wind
p <- plogis(alpha0 + alpha1 * wind) # Detection probability # Take J = 3 abundance measurements at each site
for(j in 1:J) {
C[,j] <- rbinom(M, N, p[,j])
} # Create factors
time <- matrix(rep(as.character(1:J), M), ncol = J, byrow = TRUE)
hab <- c(rep("A", 33), rep("B", 33), rep("C", 34)) # assumes M = 100 # Bundle data
# NIMBLE: For full flexibility, we could separate this list
# into constants and data lists. For simplicity we will keep
# it as one list to be provided as the "constants" argument.
# See comments about how we would split it if desired.
win.data <- list(
## NIMBLE: C is the actual data
C = C,
## NIMBLE: Covariates can be data or constants
## If they are data, you could modify them after the model is built
wind = wind,
vegHt = vegHt,
XvegHt = seq(-1, 1,, 100), # Used only for derived quantities
Xwind = seq(-1, 1,,100), # Used only for derived quantities
## NIMBLE: The rest of these are constants, needed for model definition
## We can provide them in the same list and NIMBLE will figure it out.
M = nrow(C),
J = ncol(C),
hab = as.numeric(factor(hab))
)
Initial values
Next we need to set up initial values and choose parameters to monitor in the MCMC output. To do so we will again directly use Kéry and Royle's code.
Nst <- apply(C, 1, max)+1 # Important to give good inits for latent N
inits <- function() list(N = Nst,
alpha0 = rnorm(3),
alpha1 = rnorm(3),
beta0 = rnorm(3),
beta1 = rnorm(3)) # Parameters monitored
# could also estimate N, bayesian counterpart to BUPs before: simply add "N" to the list
params <- c("alpha0", "alpha1", "beta0", "beta1", "Nocc", "Ntotal", "Nhab", "N.critical", "lam.pred", "p.pred")
Run MCMC with nimbleMCMC
Now we are ready to run an MCMC in nimble. We will run only one chain, using the same settings as Kéry and Royle.
samples <- nimbleMCMC(
code = Section6p4_code,
constants = win.data, ## provide the combined data & constants as constants
inits = inits,
monitors = params,
niter = 22000,
nburnin = 2000,
thin = 10)
## defining model...
## Detected C as data within 'constants'.
## Adding C as data for building model.
## building model...
## setting data and initial values...
## running calculate on model (any error reports that follow may simply reflect missing values in model variables) ...
## checking model sizes and dimensions...
## checking model calculations...
## model building finished.
## compiling... this may take a minute. Use 'showCompilerOutput = TRUE' to see C++ compiler details.
## compilation finished.
## runMCMC's handling of nburnin changed in nimble version 0.6-11. Previously, nburnin samples were discarded *post-thinning*. Now nburnin samples are discarded *pre-thinning*. The number of samples returned will be floor((niter-nburnin)/thin).
## running chain 1...
## |-------------|-------------|-------------|-------------|
## |-------------------------------------------------------|
Work with the samples
Finally we want to look at our samples. NIMBLE returns samples as a simple matrix with named columns. There are numerous packages for processing MCMC output. If you want to use the coda package, you can convert a matrix to a coda mcmc object like this:
library(coda)
coda.samples <- as.mcmc(samples)
Alternatively, if you call nimbleMCMC with the argument samplesAsCodaMCMC = TRUE, the samples will be returned as a coda object.
To show that MCMC really happened, here is a plot of N.critical:
plot(jitter(samples[, "N.critical"]), xlab = "iteration", ylab = "N.critical",
main = "Number of populations with critical size",
type = "l")
Next steps
NIMBLE allows users to customize MCMC and other algorithms in many ways. See the NIMBLE User Manual and web site for more ideas.
Smaller steps you may need for converting existing code
If the main steps above aren't sufficient, consider these additional steps when converting from JAGS, WinBUGS or OpenBUGS to NIMBLE.
- Convert any use of truncation syntax
- e.g. x ~ dnorm(0, tau) T(a, b) should be re-written as x ~ T(dnorm(0, tau), a, b).
- If reading model code from a file using readBUGSmodel, the x ~ dnorm(0, tau) T(a, b) syntax will work.
- Possibly split the data into data and constants for NIMBLE.
- NIMBLE has a more general concept of data, so NIMBLE makes a distinction between data and constants.
- Constants are necessary to define the model, such as nsite in for(i in 1:nsite) {...} and constant vectors of factor indices (e.g. block in mu[block[i]]).
- Data are observed values of some variables.
- Alternatively, one can provide a list of both constants and data for the constants argument to nimbleModel, and NIMBLE will try to determine which is which. Usually this will work, but when in doubt, try separating them.
- Possibly update initial values (inits).
- In some cases, NIMBLE likes to have more complete inits than the other packages.
- In a model with stochastic indices, those indices should have inits values.
- When using nimbleMCMC or runMCMC, inits can be a function, as in R packages for calling WinBUGS, OpenBUGS or JAGS. Alternatively, it can be a list.
- When you build a model with nimbleModel for more control than nimbleMCMC, you can provide inits as a list. This sets defaults that can be over-ridden with the inits argument to runMCMC.
转自:https://r-nimble.org/quick-guide-for-converting-from-jags-or-bugs-to-nimble
Quick guide for converting from JAGS or BUGS to NIMBLE的更多相关文章
- Nemerle Quick Guide
This is a quick guide covering nearly all of Nemerle's features. It should be especially useful to a ...
- 29 A Quick Guide to Go's Assembler 快速指南汇编程序:使用go语言的汇编器简介
A Quick Guide to Go's Assembler 快速指南汇编程序:使用go语言的汇编器简介 A Quick Guide to Go's Assembler Constants Symb ...
- (转) Quick Guide to Build a Recommendation Engine in Python
本文转自:http://www.analyticsvidhya.com/blog/2016/06/quick-guide-build-recommendation-engine-python/ Int ...
- Quick Guide to Microservices with Spring Boot 2.0, Eureka and Spring Cloud
https://piotrminkowski.wordpress.com/2018/04/26/quick-guide-to-microservices-with-spring-boot-2-0-eu ...
- Use swig + lua quick guide
软件swigwin3 用于生成c的lua包装lua5.2源代码 步骤进入目录G:\sw\swigwin-3.0.12\Examples\lua\arrays执行 SWIG -lua ex ...
- (转) [it-ebooks]电子书列表
[it-ebooks]电子书列表 [2014]: Learning Objective-C by Developing iPhone Games || Leverage Xcode and Obj ...
- windows ntp安装及调试
Setting up NTP on Windows It's very helpful that Meinberg have provided an installer for the highly- ...
- ROM后缀含义
ROM files, unless altered by the uploader, always have special suffixes to quickly denote what the s ...
- spring-boot(三) HowTo
Spring Boot How To 1. 简介 本章节将回答一些常见的"我该怎么做"类型的问题,这些问题在我们使用spring Boot时经常遇到.这绝不是一个详尽的列表,但它覆 ...
随机推荐
- Win32程序支持命令行参数的做法
作者:朱金灿 来源:http://blog.csdn.net/clever101 首先说说Win 32 API程序如何支持命令行参数.Win 32程序的入口函数为: int APIENTRY _tWi ...
- UVA 257 Palinwords(hash)题解
思路:给你字符串,如果他包含至少两个长度大于等于3的回文,并且这些回文不能嵌套(例如aaa嵌套在aaaa,waw嵌套在awawa),如果这个字符串这么牛逼的话,就输出他. 思路:拿到字符串先正序has ...
- ccf 行车路线
问题描述 小明和小芳出去乡村玩,小明负责开车,小芳来导航. 小芳将可能的道路分为大道和小道.大道比较好走,每走1公里小明会增加1的疲劳度.小道不好走,如果连续走小道,小明的疲劳值会快速增加,连续走s公 ...
- POJ 2771 Guardian of Decency
http://poj.org/problem?id=2771 题意: 一个老师想带几个同学出去,但是他怕他们会谈恋爱,所以带出去的同学两两之间必须满足如下条件之一: ①身高差大于40 ②同性 ③喜欢 ...
- shell 判断是否是目录
创建一个文件和一个文件夹 touch sss mkdir d test.sh #!/bin/bash echo "enter the name:" read filename if ...
- python 正则匹配字符串里面的字符
import re x=re.findall(r'\bf[a-z]*', 'which foot or hand fell fastest') print(x)
- 【Python】实现将Excel编写的用例上传到testlink指定用例集
背景 百科上说TestLink 是基于web的测试用例管理系统,主要功能是测试用例的创建.管理和执行,并且还提供了一些简单的统计功能.其他的信息可以参照他们的官网http://www.testlink ...
- [html5]HTML5中<section>和<article>的区别
一.section元素 从字面理解就是区块.部分的意思,相对于article元素更加广泛,每个区块都可以使用,比如页面里的导航菜单.文章正文.文章的评论等. 1.section元素用于对网站或应用程序 ...
- php多站点配置以及Forbidden You don't have permission to access / on this server问题解决
php多站点配置以及Forbidden You don't have permission to access / on this server问题解决 一.总结 一句话总结:我的问题是php的版本问 ...
- HDU-4035-概率dp-期望-公式化简
Maze Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others)Total Submis ...