传统的GBDT是以CART作为基分类器,xgboost还支持线性分类器,这个时候XGBOOST相当于带L1和L2正则化的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。传统的GBDT在优化的hih只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。顺便提一下,xgboost工具支持自定义代价函数,只要函数可一阶和二阶求导。

xgboost在代价函数里加入了正则项,用于控制模型的复杂度。正则项里包含了树的叶子节点个数、每个叶子节点上输出的score是L2模的平方和。使学习出来的模型更加简单,防止过拟合,这也是xgboost优于传统GBDT的一个特性。

Shrinkage(缩减),相当于学习速率。xgboost在进行完一次迭代后,会将叶子节点的权重乘上该系数,主要是为了消弱每棵树的影响,让后面有更大的学习空间。在实际应用中,一般把学习率设置的小一点,然后迭代次数设置的大一点(补充:传统GBDT的实现也有学习速率)

列抽样。xgboost借鉴了随机森林的做法,支持列抽样,不仅能降低过拟合,还能减少计算,这也是xgboost异于传统gbdt的一个特性。

对缺失值的处理。对于特征的值有缺失的样本,xgboost可以自动学习出她的分裂方向。

xgboost工具支持并行。boosting不是一种串行的结构吗?怎么并行的?

注意xgboost的并行不是tree粒度的并行,xgboost也是一次迭代完成才能进行下一次迭代的(第t次迭代的代价函数里面包含了前面t-1次迭代的预测值)。xgboost的并行是在特征粒度上的。我们知道,决策树的学习最耗时的一个步骤就是对特征的值进行排序(因为要确定最佳分割点),xgboost在训练之前,预先对数据进行排序,然后保存block结构,后面的迭代中重复的使用这个结构,大大减小计算量。这个block结构也使得并行称为了可能,在进行节点的分裂时,需要计算每个特征的增益,最终选增益最大的那个特征去做分裂,那么各个特征的增益计算就可以开多线程进行。

可并行的近似值方图算法。树节点在进行分裂时,我们需要计算每个特征的每个分割点对应的增益,即用贪心法枚举所有可能的分割点。当数据无法一次载入内存或者在分布式情况下,贪心算法效率就会变得很低,所以xgboost还提出了一种可并行的近似直方图算法,用于高效地生成候选的分割点

GBDT为什么不能并行,XGBoost却可以的更多相关文章

  1. Adaboost和GBDT的区别以及xgboost和GBDT的区别

    Adaboost和GBDT的区别以及xgboost和GBDT的区别 以下内容转自 https://blog.csdn.net/chengfulukou/article/details/76906710 ...

  2. 机器学习算法总结(四)——GBDT与XGBOOST

    Boosting方法实际上是采用加法模型与前向分布算法.在上一篇提到的Adaboost算法也可以用加法模型和前向分布算法来表示.以决策树为基学习器的提升方法称为提升树(Boosting Tree).对 ...

  3. GB、GBDT、XGboost理解

    GBDT和xgboost在竞赛和工业界使用都非常频繁,能有效的应用到分类.回归.排序问题,虽然使用起来不难,但是要能完整的理解还是有一点麻烦的.本文尝试一步一步梳理GB.GBDT.xgboost,它们 ...

  4. GBDT和XGBOOST算法原理

    GBDT 以多分类问题为例介绍GBDT的算法,针对多分类问题,每次迭代都需要生成K个树(K为分类的个数),记为\(F_{mk}(x)\),其中m为迭代次数,k为分类. 针对每个训练样本,使用的损失函数 ...

  5. GBDT 与 XGBoost

    GBDT & XGBoost ### 回归树 单棵回归树可以表示成如下的数学形式 \[ f(x) = \sum_j^Tw_j\mathbf{I}(x\in R_j) \] 其中\(T\)为叶节 ...

  6. XGBoost算法原理小结

    在两年半之前作过梯度提升树(GBDT)原理小结,但是对GBDT的算法库XGBoost没有单独拿出来分析.虽然XGBoost是GBDT的一种高效实现,但是里面也加入了很多独有的思路和方法,值得单独讲一讲 ...

  7. xgboost与gdbt的不同和优化

    XGBoost是GBDT算法的一种变种,是一种常用的有监督集成学习算法:是一种 伸缩性强.便捷的可并行构建模型的Gradient Boosting算法 Xgboost和GBDT不同之处 xgboost ...

  8. 树模型常见面试题(以XGBoost为主)

    参考资料: 珍藏版 | 20道XGBoost面试题 推荐系统面试题之机器学习(一) -----树模型 1. 简单介绍一下XGBoost2. XGBoost与GBDT有什么不同3. XGBoost为什么 ...

  9. 1.XGBOOST算法推导

    最近因为实习的缘故,所以开始复习各种算法推导~~~就先拿这个xgboost练练手吧. (参考原作者ppt 链接:https://pan.baidu.com/s/1MN2eR-4BMY-jA5SIm6W ...

随机推荐

  1. TensorFlow学习('utf-8' codec can't decode byte 0xff in position 0: invalid start byte)

    使用语句: image_raw_data = tf.gfile.GFile("./picture.jpg", "r").read() 读取图像时报错如下: Un ...

  2. linux各种压缩包的压缩和解压方法

    .tar/.war(tar是打包,不是压缩) 解包:tar xvf FileName.tar / FileName.war 打包:tar cvf FileName.tar DirName .gz 解压 ...

  3. FreeMarker之根据模板生成Java代码

    FreeMarker根据模板生成Java代码,光这句话,大家想必也知道它的应用了,比如流行的DRY原则,该原则的意思,可简单概述为"不要写重复的代码". 比如Java中三层架构,数 ...

  4. fiddler常用功能一

    fiddler备忘,好久不用,有些步骤忘记了 1.本机pc,目前ie和chrome都可以直接抓取,但是搜狗浏览器暂时抓不到 2.手机端抓包 (1)设置下代理:fiddler客户端查看下端口,然后在手机 ...

  5. 微服务前端开发框架React-Admin

    前言 React-Admin是基于React16.x.Ant Design3.x的管理系统架构. 采用前后端分离,内置了许多管理系统常用功能,通过一些脚本.封装帮助开发人员快速开发管理系统,集中精力处 ...

  6. 如何通过github上传项目并在readme.md中展示图片二维码

    将本地项目上传至github   第一步:git init (创建仓库)   第二步:git add README.md (添加项目)git add *   第三步:git commit -m &qu ...

  7. 【ZOJ 2996】(1+x)^n(二项式定理)

    Please calculate the coefficient modulo 2 of x^i in (1+x)^n. Input For each case, there are two inte ...

  8. 【模板】区间dp

    有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子合并为1堆.在合并的过程中只能每次将相邻的两堆石子合并,每次合并的花费为这两堆石子之和,求合并成1堆的最小花费. dp[i][j]表示将区间[i ...

  9. 【整理】MySQL查询优化

    优化建议 对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用 ...

  10. Mongodb安装步骤(基于mongodb-3.2.12-tar.gz)

    1. 下载mongodb数据库:https://www.mongodb.com/download-center#community 2. 加压tar.gz压缩包,把解压文件拷贝到程序目录即可 3. 创 ...