题目描述

棋盘是一个n×m的矩形,分成n行m列共n*m个小方格。现在萌萌和南南有C种不同颜色的颜料,他们希望把棋盘用这些颜料染色,并满足以下规定: 
1.  棋盘的每一个小方格既可以染色(染成C种颜色中的一种) ,也可以不染色。 
2.  棋盘的每一行至少有一个小方格被染色。 
3.  棋盘的每一列至少有一个小方格被染色。 
4.  种颜色都在棋盘上出现至少一次。 
以下是一些将3×3棋盘染成C = 3种颜色(红、黄、蓝)的例子:

请你求出满足要求的不同的染色方案总数。只要存在一个位置的颜色不同,即认为两个染色方案是不同的

输入

输入只有一行 3 个整数 n,m,c 。1 < = n,m,c < = 400

输出

输出一个整数,为不同染色方案总数。因为总数可能很大,只需输出总数
mod 1,000,000,007的值。

样例输入

2 2 3

样例输出

60


题解

容斥原理

题目要求:所有行都有格子被染色、所有列都有格子被染色、所有颜色都有格子被染色的方案数。

我们可以容斥一下,求:有 $i$ 行没有格子被染色、有 $j$ 列没有格子被染色、有 $k$ 种颜色没有格子被染色的方案数。

那么答案为 $\sum\limits_{i=0}^n\sum\limits_{j=0}^m\sum\limits_{k=0}^c(-1)^{i+j+k}C_n^iC_m^jC_c^kk^{(n-i)(m-j)}$ 。

由于 $n,m,c$ 都只有400,因此不需要做进一步推导,直接预处理组合数+幂,暴力计算即可。

时间复杂度 $O(n^3)$

#include <cstdio>
#include <algorithm>
#define mod 1000000007
using namespace std;
typedef long long ll;
ll c[410][410] , pow[160010];
int main()
{
int n , m , p , i , j , k;
ll ans = 0;
scanf("%d%d%d" , &n , &m , &p);
pow[0] = c[0][0] = 1;
for(i = 1 ; i <= n || i <= m || i <= p ; i ++ )
{
c[i][0] = 1;
for(j = 1 ; j <= i ; j ++ )
c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % mod;
}
for(i = 0 ; i <= p ; i ++ )
{
for(j = 1 ; j <= n * m ; j ++ ) pow[j] = pow[j - 1] * (p - i + 1) % mod;
for(j = 0 ; j <= n ; j ++ )
for(k = 0 ; k <= m ; k ++ )
ans = (ans + c[p][i] * c[n][j] % mod * c[m][k] % mod * pow[(n - j) * (m - k)] % mod * ((i ^ j ^ k) & 1 ? -1 : 1) + mod) % mod;
}
printf("%lld\n" , ans);
return 0;
}

【bzoj4487】[Jsoi2015]染色问题 容斥原理的更多相关文章

  1. [bzoj4487][Jsoi2015]染色_容斥原理

    染色 bzoj-4487 Jsoi-2015 题目大意:给你一个n*m的方格图,在格子上染色.有c中颜色可以选择,也可以选择不染.求满足条件的方案数,使得:每一行每一列都至少有一个格子被染色,且所有的 ...

  2. BZOJ4487 [Jsoi2015]染色问题

    BZOJ4487 [Jsoi2015]染色问题 题目描述 传送门 题目分析 发现三个限制,大力容斥推出式子是\(\sum_{i=0}^{N}\sum_{j=0}^{M}\sum_{k=0}^{C}(- ...

  3. bzoj4487[Jsoi2015]染色问题 容斥+组合

    4487: [Jsoi2015]染色问题 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 211  Solved: 127[Submit][Status ...

  4. 2019.02.09 bzoj4487: [Jsoi2015]染色问题(容斥原理)

    传送门 题意简述: 用ccc中颜色给一个n∗mn*mn∗m的方格染色,每个格子可涂可不涂,问最后每行每列都涂过色且ccc中颜色都出现过的方案数. 思路: 令fi,j,kf_{i,j,k}fi,j,k​ ...

  5. BZOJ4487 JSOI2015染色问题(组合数学+容斥原理)

    逐个去除限制.第四个限制显然可以容斥,即染恰好c种颜色的方案数=染至多c种颜色的方案数-染至多c-1种颜色的方案数+染至多c-2种颜色的方案数…… 然后是限制二.同样可以容斥,即恰好选n行的方案数=至 ...

  6. [BZOJ4487][JSOI2015]染色问题(容斥)

    一开始写了7个DP方程,然后意识到这种DP应该都会有一个通式. 三个条件:有色行数为n,有色列数为m,颜色数p,三维容斥原理仍然成立. 于是就是求:$\sum_{i=0}^{n}\sum_{j=0}^ ...

  7. 【BZOJ4487】[JSOI2015]染色问题(容斥)

    [BZOJ4487][JSOI2015]染色问题(容斥) 题面 BZOJ 题解 看起来是一个比较显然的题目? 首先枚举一下至少有多少种颜色没有被用到过,然后考虑用至多\(k\)种颜色染色的方案数. 那 ...

  8. 【BZOJ4487】[JSOI2015] 染色问题(高维容斥)

    点此看题面 大致题意: 有一个\(n*m\)的矩形,先让你用\(C\)种颜色给它染色.每个格子可染色可不染色,但要求每行每列至少有一个小方格被染色,且每种颜色至少出现一次.求方案数. 高维容斥 显然题 ...

  9. Luogu4491 [HAOI2018]染色 【容斥原理】【NTT】

    题目分析: 一开始以为是直接用指数型生成函数,后来发现复杂度不对,想了一下容斥的方法. 对于有$i$种颜色恰好出现$s$次的情况,利用容斥原理得到方案数为 $$\binom{m}{i}\frac{P_ ...

随机推荐

  1. [agc002D]Stamp Rally-[并查集+整体二分]

    Description 题目大意:给你一个n个点m个条边构成的简单无向连通图,有Q组询问,每次询问从两个点x,y走出两条路径,使这两条路径覆盖z个点,求得一种方案使得路径上经过的边的最大编号最小.n, ...

  2. 【SQLSERVER】服务挂起解决办法

    一. 问题描述:某项SQLSERVER服务,运行状态为“正在挂起更改”,导致该服务无法使用,也不能启动.停止.重新启动. 二.解决方法 方法一:从任务管理器 → 进程 (勾上 显示所有用户进程) → ...

  3. WPF 如何自定义一个弹框

    ------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 简述: 手工以原生Grid的方式,自定义了一个仿弹窗效果,优点可以自定义,缺点需要自己实现以及维护整个弹窗的效 ...

  4. 原生与JS交互 iOS

      前言 Hybrid App(混合模式移动应用)是指介于web-app.native-app这两者之间的app,兼具“Native App良好用户交互体验的优势”和“Web App跨平台开发的优势” ...

  5. 不会Python开发的运维终将被淘汰?

    Python语言是一种面向对象.直译式计算机程序设计语言,由Guido van Rossum于1989年底发明.Python语法简捷而清晰,具有丰富和强大的类库,具有可扩展性和可嵌入性,是现代比较流行 ...

  6. JS Windows.document对象

    四中选择器:class ,id , name , 标签 通过选择器获取对象: ...................................ClassName('');  -- class选择 ...

  7. asp.net 问题:Web 服务器上的请求筛选模块被配置为 拒绝包含的查询字符串过长的请求

    发现问题: post请求,在发送一个图片base64编码的字符串时,服务端报这个错误. 报错信息中给出了解决办法: 最可能的原因: Web 服务器上的请求筛选被配置为拒绝该请求,因为查询字符串过长. ...

  8. MYSQL主从复制配置(整理)

    MYSQL主从原理及过程 原理 Mysql的 Replication 是一个异步的复制过程(mysql5.1.7以上版本分为异步复制和半同步两种模式),从一个 Mysql instace(我们称之为 ...

  9. JavaScript学习笔记(二)——函数和数组

    第二章 函数简介 1 第一个函数示例 <script language="JavaScript" type="text/JavaScript"> f ...

  10. pager-taglib2.0中文传参乱码问题

    1.重现问题 在web项目中有时会用到pager-taglib来作为分页的标签,如上图红色框标识所示,当我们需要把页面参数保持的时候我们会在<pg:param />标签中把参数进行传递. ...