题目描述

棋盘是一个n×m的矩形,分成n行m列共n*m个小方格。现在萌萌和南南有C种不同颜色的颜料,他们希望把棋盘用这些颜料染色,并满足以下规定: 
1.  棋盘的每一个小方格既可以染色(染成C种颜色中的一种) ,也可以不染色。 
2.  棋盘的每一行至少有一个小方格被染色。 
3.  棋盘的每一列至少有一个小方格被染色。 
4.  种颜色都在棋盘上出现至少一次。 
以下是一些将3×3棋盘染成C = 3种颜色(红、黄、蓝)的例子:

请你求出满足要求的不同的染色方案总数。只要存在一个位置的颜色不同,即认为两个染色方案是不同的

输入

输入只有一行 3 个整数 n,m,c 。1 < = n,m,c < = 400

输出

输出一个整数,为不同染色方案总数。因为总数可能很大,只需输出总数
mod 1,000,000,007的值。

样例输入

2 2 3

样例输出

60


题解

容斥原理

题目要求:所有行都有格子被染色、所有列都有格子被染色、所有颜色都有格子被染色的方案数。

我们可以容斥一下,求:有 $i$ 行没有格子被染色、有 $j$ 列没有格子被染色、有 $k$ 种颜色没有格子被染色的方案数。

那么答案为 $\sum\limits_{i=0}^n\sum\limits_{j=0}^m\sum\limits_{k=0}^c(-1)^{i+j+k}C_n^iC_m^jC_c^kk^{(n-i)(m-j)}$ 。

由于 $n,m,c$ 都只有400,因此不需要做进一步推导,直接预处理组合数+幂,暴力计算即可。

时间复杂度 $O(n^3)$

#include <cstdio>
#include <algorithm>
#define mod 1000000007
using namespace std;
typedef long long ll;
ll c[410][410] , pow[160010];
int main()
{
int n , m , p , i , j , k;
ll ans = 0;
scanf("%d%d%d" , &n , &m , &p);
pow[0] = c[0][0] = 1;
for(i = 1 ; i <= n || i <= m || i <= p ; i ++ )
{
c[i][0] = 1;
for(j = 1 ; j <= i ; j ++ )
c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % mod;
}
for(i = 0 ; i <= p ; i ++ )
{
for(j = 1 ; j <= n * m ; j ++ ) pow[j] = pow[j - 1] * (p - i + 1) % mod;
for(j = 0 ; j <= n ; j ++ )
for(k = 0 ; k <= m ; k ++ )
ans = (ans + c[p][i] * c[n][j] % mod * c[m][k] % mod * pow[(n - j) * (m - k)] % mod * ((i ^ j ^ k) & 1 ? -1 : 1) + mod) % mod;
}
printf("%lld\n" , ans);
return 0;
}

【bzoj4487】[Jsoi2015]染色问题 容斥原理的更多相关文章

  1. [bzoj4487][Jsoi2015]染色_容斥原理

    染色 bzoj-4487 Jsoi-2015 题目大意:给你一个n*m的方格图,在格子上染色.有c中颜色可以选择,也可以选择不染.求满足条件的方案数,使得:每一行每一列都至少有一个格子被染色,且所有的 ...

  2. BZOJ4487 [Jsoi2015]染色问题

    BZOJ4487 [Jsoi2015]染色问题 题目描述 传送门 题目分析 发现三个限制,大力容斥推出式子是\(\sum_{i=0}^{N}\sum_{j=0}^{M}\sum_{k=0}^{C}(- ...

  3. bzoj4487[Jsoi2015]染色问题 容斥+组合

    4487: [Jsoi2015]染色问题 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 211  Solved: 127[Submit][Status ...

  4. 2019.02.09 bzoj4487: [Jsoi2015]染色问题(容斥原理)

    传送门 题意简述: 用ccc中颜色给一个n∗mn*mn∗m的方格染色,每个格子可涂可不涂,问最后每行每列都涂过色且ccc中颜色都出现过的方案数. 思路: 令fi,j,kf_{i,j,k}fi,j,k​ ...

  5. BZOJ4487 JSOI2015染色问题(组合数学+容斥原理)

    逐个去除限制.第四个限制显然可以容斥,即染恰好c种颜色的方案数=染至多c种颜色的方案数-染至多c-1种颜色的方案数+染至多c-2种颜色的方案数…… 然后是限制二.同样可以容斥,即恰好选n行的方案数=至 ...

  6. [BZOJ4487][JSOI2015]染色问题(容斥)

    一开始写了7个DP方程,然后意识到这种DP应该都会有一个通式. 三个条件:有色行数为n,有色列数为m,颜色数p,三维容斥原理仍然成立. 于是就是求:$\sum_{i=0}^{n}\sum_{j=0}^ ...

  7. 【BZOJ4487】[JSOI2015]染色问题(容斥)

    [BZOJ4487][JSOI2015]染色问题(容斥) 题面 BZOJ 题解 看起来是一个比较显然的题目? 首先枚举一下至少有多少种颜色没有被用到过,然后考虑用至多\(k\)种颜色染色的方案数. 那 ...

  8. 【BZOJ4487】[JSOI2015] 染色问题(高维容斥)

    点此看题面 大致题意: 有一个\(n*m\)的矩形,先让你用\(C\)种颜色给它染色.每个格子可染色可不染色,但要求每行每列至少有一个小方格被染色,且每种颜色至少出现一次.求方案数. 高维容斥 显然题 ...

  9. Luogu4491 [HAOI2018]染色 【容斥原理】【NTT】

    题目分析: 一开始以为是直接用指数型生成函数,后来发现复杂度不对,想了一下容斥的方法. 对于有$i$种颜色恰好出现$s$次的情况,利用容斥原理得到方案数为 $$\binom{m}{i}\frac{P_ ...

随机推荐

  1. 20155337祁家伟 2016-2017-2 《Java程序设计》第2周学习总结

    20155337 2016-2017-2 <Java程序设计>第2周学习总结 教材学习内容总结 这周我学习了从JDK到IDE的学习内容,简单来说分为以下几个部分 使用命令行和IDE两种方式 ...

  2. sort与qsort的异同

    主要内容: 1.qsort的用法 2.sort的用法 3.qsort和sort的区别 qsort的用法: 原 型: void qsort(void *base, int nelem, int widt ...

  3. struts常用知识

    一,struts2是什么? struts2是一个控制框架,相当于连接底层和显示层,控制页面和数据展示 二,为什么用struts2? jsp+javabean模式:jsp里的小脚本java代码太多,页面 ...

  4. 第六章P2P技术及应用

    第六章P2P技术及应用 P2P技术在我们日常生活中非常实用,例如我们常用的QQ.PPLive.BitTorrent就是基于P2P技术研发.下面将本章中的重点内容进行归纳. 文章中的Why表示产生的背景 ...

  5. UGUI简易摇杆

    实现 直接使用系统自带圆形控件图标 编写脚本, 实现UGUI拖拽事件 将多拽范围限定于给定半径和圆心的圆内 计算出等同于Input.GetAxis()的值,直接控制被控制物体 代码 using Sys ...

  6. Hbase 教程-安装

    HBase安装 安装前设置 安装Hadoop在Linux环境下之前,需要建立和使用Linux SSH(安全Shell).按照下面设立Linux环境提供的步骤. 创建一个用户 首先,建议从Unix创建一 ...

  7. UI优秀框架(库)

    1.vux 官网:https://doc.vux.li/zh-CN/ Github:https://github.com/airyland/vux 13818  Stars  3064 Forks   ...

  8. hadoop的safemode 安全模式

    hadoop启动检查副本块数,就会进入safemode safemode的相关情况 虽然不能进行修改文件的操作,但是可以浏览目录结构.查看文件内容的. 在命令行下是可以控制安全模式的进入.退出和查看的 ...

  9. lamp一键配置 --转自秋水

    https://teddysun.com/lamp LAMP一键安装脚本 最后修改于:2015年11月08日 / 秋水逸冰 / 54,300 次围观 973 本脚本适用环境: 系统支持:CentOS/ ...

  10. 又要开始新的征程了hhh(这次内容比较感兴趣)

    因为做英雄部分,既是我比较感兴趣,又很符合这次c++学习的目的,所以我很开心. 其实从小玩的RPG,即时战略和回合制游戏不算少,对于属性方法其实都算不上陌生.但是还是在网上找了一些学习资源. http ...