中位数定义为所有值从小到大排序后排在正中间的那个数,如果值有偶数个,通常取最中间的两个数值的平均数作为中位数。

现在有n个数,每个数都是独一无二的,求出每个数在多少个包含其的区间中是中位数。

首先,显然有n^2logn的算法。

考虑枚举每个数x,求满足包含其的区间中这个数是中位数的区间个数。

考虑前缀和,记S1[i]表示前i个数里面>x的个数,S2[i]表示前i个数里面<x的个数。

对于任意满足条件的区间[l,r],则有S2[r]-S2[l]=S1[r]-S1[l].

转化得S2[r]-S1[r]=S2[l]-S1[l],所以只需考虑x的两端差分值的重复次数即可统计得出答案。

复杂度O(n^2).

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FDR(i,a,n) for(int i=a; i>=n; --i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
inline int Scan() {
int x=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-; ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-''; ch=getchar();}
return x*f;
}
inline void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... int a[N], num[N<<], ans[N];
const int P=; int main ()
{
int n=Scan();
FOR(i,,n) a[i]=Scan();
FOR(i,,n) {
mem(num,); num[P]=;
int now=;
FOR(j,,i-) {
if (a[j]<a[i]) ++now;
else --now;
++num[P+now];
}
ans[i]=num[P+now];
FOR(j,i+,n) {
if (a[j]<a[i]) ++now;
else --now;
ans[i]+=num[P+now];
}
}
FOR(i,,n) printf("%d ",ans[i]);
return ;
}

51nod 1682 中位数计数(差分统计)的更多相关文章

  1. 51nod 1682 中位数计数

    1682 中位数计数基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 中位数定义为所有值从小到大排序后排在正中间的那个数,如果值有偶数个,通常取最中间的两个数值的平均 ...

  2. 51nod 1682 中位数计数(前缀和)

    51nod 1682 中位数计数 思路: sum[i]表示到i为止的前缀和(比a[i]小的记为-1,相等的记为0,比a[i]大的记为1,然后求这些-1,0,1的前缀和): hash[sum[i]+N] ...

  3. 51 nod 1682 中位数计数

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1682 1682 中位数计数 基准时间限制:1 秒 空间限制: ...

  4. hdu-5701 中位数计数(中位数)

    题目链接: 中位数计数 Problem Description   中位数定义为所有值从小到大排序后排在正中间的那个数,如果值有偶数个,通常取最中间的两个数值的平均数作为中位数. 现在有nn个数,每个 ...

  5. hdu 5701 中位数计数 思路题

    中位数计数 Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  6. HDU 5701 中位数计数 百度之星初赛

    中位数计数 Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Sub ...

  7. HDU 5701 ——中位数计数——————【思维题】

    中位数计数 Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  8. 纹理特征描述之灰度差分统计特征(平均值 对比度 熵) 计算和比较两幅纹理图像的灰度差分统计特征 matlab代码实现

    灰度差分统计特征有: 平均值:​ 对比度:​ 熵:​ i表示某一灰度值,p(i)表示图像取这一灰度值的概率 close all;clear all;clc; % 纹理图像的灰度差分统计特征 J = i ...

  9. [51Nod 1222] - 最小公倍数计数 (..怎么说 枚举题?)

    题面 求∑k=ab∑i=1k∑j=1i[lcm(i,j)==k]\large\sum_{k=a}^b\sum_{i=1}^k\sum_{j=1}^i[lcm(i,j)==k]k=a∑b​i=1∑k​j ...

随机推荐

  1. zedboard学习(1)OLED驱动显示图像

    1. 干点啥?驱动一下上面的屏吧 2. 找个代码研究一下,cat命令用于读取文件(普通文件或设备文件)的内容并进行输出.据说板子已经做好OLED的驱动了,驱动映射为/dev/zed_oled,所以直接 ...

  2. 每日 mark

    SIGNAL=${SIGNAL:-TERM} PIDS=$(jps -lm | grep -i 'kafka\.Kafka' | awk '{print $1}')if [ -z "$PID ...

  3. python yagmail第三方库发送邮件--更简洁

    1.安装第三方库yagmail: pip install yagmail 2.上代码 import yagmail import os def send_email(): #链接邮箱服务器 serve ...

  4. Linux查看文件内容

    查看文件内容的命令: cat:连接文件并且打印在标准输出 tac:连接并且倒序打印文件 more:屏幕文件熟读过滤器 less head:输出文件的第一部分 tail:输出文件最后的部分 nl:输出文 ...

  5. Centos下安装并设置nginx开机自启动

    一.在centos环境下安装下载并安装nginx,由于nginx需要依赖一些环境才能安装,主要依赖g++.gcc.openssl-devel.pcre-devel和zlib-devel这些环境,首先得 ...

  6. mongo复杂操作

    相比关系型数据库, Array [1,2,3,4,5] 和 Object { 'name':'DragonFire' } 是MongoDB 比较特殊的类型了 特殊在哪里呢?在他们的操作上又有什么需要注 ...

  7. VMWARE网络配置内网与外网互ping

    新增网络适配器 设置自定义VMnet0 自动桥接 NAT的网络要配置网关 我们在CentOS中打开ifcfg-ens33文件(每个系统文件名都不同,但都是以ifcfg-ens33开头的文件),进行修改 ...

  8. 算法与AI的暗黑面:3星|《算法的陷阱:超级平台、算法垄断与场景欺骗》

    算法的陷阱:超级平台.算法垄断与场景欺骗 全书讲算法与AI的暗黑面:价格歧视.导致算法军备竞赛.导致商家降价冲动降低.平台作恶(向劣质商家收费导致品质下降.与开发商一起分析用户隐私)等. 作者从商业. ...

  9. join 中的on和where的区别

    数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表, 然后再将这张临时表返回给用户. 在使用left jion时,on和where条件的区别如下: 1.on条件是在生成临时表时使用的条 ...

  10. python购物车优化

    一.需求分析 拥有用户接口和商家接口 用户能够进行消费记录查询,充值,购物等功能,消费记录存储于数据库 商家可以进行商品的增删改等操作 二.程序流程图 程序大致流程图如下: 三.代码实现 本程序分成两 ...