中位数定义为所有值从小到大排序后排在正中间的那个数,如果值有偶数个,通常取最中间的两个数值的平均数作为中位数。

现在有n个数,每个数都是独一无二的,求出每个数在多少个包含其的区间中是中位数。

首先,显然有n^2logn的算法。

考虑枚举每个数x,求满足包含其的区间中这个数是中位数的区间个数。

考虑前缀和,记S1[i]表示前i个数里面>x的个数,S2[i]表示前i个数里面<x的个数。

对于任意满足条件的区间[l,r],则有S2[r]-S2[l]=S1[r]-S1[l].

转化得S2[r]-S1[r]=S2[l]-S1[l],所以只需考虑x的两端差分值的重复次数即可统计得出答案。

复杂度O(n^2).

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FDR(i,a,n) for(int i=a; i>=n; --i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
inline int Scan() {
int x=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-; ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-''; ch=getchar();}
return x*f;
}
inline void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... int a[N], num[N<<], ans[N];
const int P=; int main ()
{
int n=Scan();
FOR(i,,n) a[i]=Scan();
FOR(i,,n) {
mem(num,); num[P]=;
int now=;
FOR(j,,i-) {
if (a[j]<a[i]) ++now;
else --now;
++num[P+now];
}
ans[i]=num[P+now];
FOR(j,i+,n) {
if (a[j]<a[i]) ++now;
else --now;
ans[i]+=num[P+now];
}
}
FOR(i,,n) printf("%d ",ans[i]);
return ;
}

51nod 1682 中位数计数(差分统计)的更多相关文章

  1. 51nod 1682 中位数计数

    1682 中位数计数基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 中位数定义为所有值从小到大排序后排在正中间的那个数,如果值有偶数个,通常取最中间的两个数值的平均 ...

  2. 51nod 1682 中位数计数(前缀和)

    51nod 1682 中位数计数 思路: sum[i]表示到i为止的前缀和(比a[i]小的记为-1,相等的记为0,比a[i]大的记为1,然后求这些-1,0,1的前缀和): hash[sum[i]+N] ...

  3. 51 nod 1682 中位数计数

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1682 1682 中位数计数 基准时间限制:1 秒 空间限制: ...

  4. hdu-5701 中位数计数(中位数)

    题目链接: 中位数计数 Problem Description   中位数定义为所有值从小到大排序后排在正中间的那个数,如果值有偶数个,通常取最中间的两个数值的平均数作为中位数. 现在有nn个数,每个 ...

  5. hdu 5701 中位数计数 思路题

    中位数计数 Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  6. HDU 5701 中位数计数 百度之星初赛

    中位数计数 Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Sub ...

  7. HDU 5701 ——中位数计数——————【思维题】

    中位数计数 Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  8. 纹理特征描述之灰度差分统计特征(平均值 对比度 熵) 计算和比较两幅纹理图像的灰度差分统计特征 matlab代码实现

    灰度差分统计特征有: 平均值:​ 对比度:​ 熵:​ i表示某一灰度值,p(i)表示图像取这一灰度值的概率 close all;clear all;clc; % 纹理图像的灰度差分统计特征 J = i ...

  9. [51Nod 1222] - 最小公倍数计数 (..怎么说 枚举题?)

    题面 求∑k=ab∑i=1k∑j=1i[lcm(i,j)==k]\large\sum_{k=a}^b\sum_{i=1}^k\sum_{j=1}^i[lcm(i,j)==k]k=a∑b​i=1∑k​j ...

随机推荐

  1. dalao自动报表邮件2.0

    经过昨天的修改优化后,dalao收到了不是“木马”的邮件,欣慰地点了点头,“不错,不错,这几张表设计的简洁明了,看着有货!不过呀,,,这些表的数据太多了一点,十几天的数据一大溜,能不能再简洁一点,做一 ...

  2. 【转】: 塞尔达组在GDC2017演讲的文字翻译:显示的力量

      塞尔达系列推出新作的时候,美术风格都有明显变化.本作的风格比起写实,笔触轻快变化幅度大是其特征.2011年公开的技术演示中,画面风格要更加写实.最终版则更接近于卡通.5年里到底发生了什么呢? ▲2 ...

  3. ZOJ 3962

    就是统计1~n中出现的各个数字的次数,当然是在16进制下. 不过有个区间问题的小技巧,统计从 [x,y] 可以转换成 从 [1,y] 减去 [1,x-1]. 不过要分类讨论一下,因为有可能会出现溢出, ...

  4. Golang项目开发管理

    工具 1. task(项目管理,类似于make) go get -u -v github.com/go-task/task/cmd/task 2. gopm(go依赖管理) go get -u git ...

  5. leetcode个人题解——#43 Multiply Strings

    思路:高精度乘法就可以了. 有两个错误以前没在意,1.成员属性定义时候不能进行初始化, vector<); 这样隐性调用了函数进行初始化的形式特别要注意,也是错误的: 2.容器类只有分配了空间时 ...

  6. 亚马逊CEO贝索斯致股东信:阐述公司未来计划

    亚马逊CEO 杰夫·贝索斯(Jeff Bezos)今天发布年度股东信, 详细描述了亚马逊的产品.服务和未来计划,当然,信中并没有任何的硬数据,比如说亚马逊Kindle的销量等等.但这封信也包括一些颇令 ...

  7. 扩展Lucas定理 扩展Lucas板子

    题意概述:多组询问,给出N,K,M,要求回答C(N,K)%M,1<=N<=10^18,1<=K<=N,2<=M<=10^6 分析: 模数不为质数只能用扩展Lucas ...

  8. iPhone上的CPU架构,核数以及运行内存

    机型 CPU架构 CPU名 CPU位数 CPU核数 运行内存 iPhone 5 ARMv7s A6 32bit 双核 1G iPhone 5c ARMV7s A6 32bit 双核 1G iPhone ...

  9. Asphalting Roads(翻译!)

    Description City X consists of n vertical and n horizontal infinite roads, forming n × n intersectio ...

  10. 作业要求20181016-3 Alpha阶段第1周/共2周 Scrum立会报告+燃尽图 01

    此次作业要求参见https://edu.cnblogs.com/campus/nenu/2018fall/homework/2246 Scrum master:范洪达 一.小组介绍 组长:王一可 组员 ...