题目描述

我们现在要利用m台机器加工n个工件,每个工件都有m道工序,每道工序都在不同的指定的机器上完成。每个工件的每道工序都有指定的加工时间。

每个工件的每个工序称为一个操作,我们用记号j−k表示一个操作,其中j为1到n中的某个数字,为工件号;k为1到m中的某个数字,为工序号,例如2−4表示第2个工件第4道工序的这个操作。在本题中,我们还给定对于各操作的一个安排顺序。

例如,当n=3,m=2时,“1−1,1−2,2−1,3−1,3−2,2−2”就是一个给定的安排顺序,即先安排第1个工件的第1个工序,再安排第1个工件的第2个工序,然后再安排第2个工件的第1个工序,等等。

一方面,每个操作的安排都要满足以下的两个约束条件。

(1) 对同一个工件,每道工序必须在它前面的工序完成后才能开始;

(2) 同一时刻每一台机器至多只能加工一个工件。

另一方面,在安排后面的操作时,不能改动前面已安排的操作的工作状态。

由于同一工件都是按工序的顺序安排的,因此,只按原顺序给出工件号,仍可得到同样的安排顺序,于是,在输入数据中,我们将这个安排顺序简写为“112332”。

还要注意,“安排顺序”只要求按照给定的顺序安排每个操作。不一定是各机器上的实际操作顺序。在具体实施时,有可能排在后面的某个操作比前面的某个操作先完成。

例如,取n=3,m=2,已知数据如下:

工件号 机器号/加工时间

工序1 工序2

1 , 1/3, 2/2

2 , 1/2 , 2/5

3 , 2/2 , 1/4

则对于安排顺序“112332”,下图中的两个实施方案都是正确的。但所需要的总时间分别是10与12。

 

当一个操作插入到某台机器的某个空档时(机器上最后的尚未安排操作的部分也可以看作一个空档),可以靠前插入,也可以靠后或居中插入。为了使问题简单一些,我们约定:在保证约束条件(111)(222)的条件下,尽量靠前插入。并且,我们还约定,如果有多个空档可以插入,就在保证约束条件(111)(222)的条件下,插入到最前面的一个空档。于是,在这些约定下,上例中的方案一是正确的,而方案二是不正确的。

显然,在这些约定下,对于给定的安排顺序,符合该安排顺序的实施方案是唯一的,请你计算出该方案完成全部任务所需的总时间。

输入输出格式

输入格式:

第111行为两个正整数,用一个空格隔开:

m n
(其中m(<20)表示机器数,n(<20)表示工件数)

第2行:个用空格隔开的数,为给定的安排顺序。

接下来的2n行,每行都是用空格隔开的m个正整数,每个数不超过20。

其中前n行依次表示每个工件的每个工序所使用的机器号,第1个数为第1个工序的机器号,第2个数为第2个工序机器号,等等。

后n行依次表示每个工件的每个工序的加工时间。

可以保证,以上各数据都是正确的,不必检验。

输出格式:

1个正整数,为最少的加工时间。

输入输出样例

输入样例#1:

2 3
1 1 2 3 3 2
1 2
1 2
2 1
3 2
2 5
2 4
输出样例#1:

10

说明

NOIP 2006 提高组 第三题

Solution:

  本题考语文,读懂了就是sb模拟。

  用数组$vis[i][j]$表示机器$i$在$j$时刻是否工作,对于每件物品的某次操作,找到需要用的那台机器,然后由该物品上次操作的时间开始枚举,在当前机器上找到最靠前的一段可供操作的时间段并标记,更新物品上次操作的时间和答案就好了。

代码:

/*Code by 520 -- 9.3*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);++(i))
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);--(i))
using namespace std;
const int N=;
int m,n,ans;
int a[N][N],b[N][N],c[N*N],d[N*N],lst[N],tot[N];
bool vis[N][N*N]; il bool check(int l,int len,int id){
For(i,l,l+len-) if(vis[id][i]) return ;
return ;
} int main(){
scanf("%d%d",&m,&n);
int sum=n*m;
For(i,,sum) scanf("%d",&c[i]),d[i]=(++tot[c[i]]);
For(i,,n) For(j,,m) scanf("%d",&b[i][j]);
For(i,,n) For(j,,m) scanf("%d",&a[i][j]);
int i;
For(j,,sum){
RE int u=c[j],id=b[u][d[j]];
for(i=lst[u]+;;i++)
if(!vis[id][i]){
if(check(i,a[u][d[j]],id))break;
}
RE int ed=i+a[u][d[j]]-;
for(i;i<=ed;i++) vis[id][i]=;
lst[u]=ed;
ans=max(ans,ed);
}
cout<<ans;
return ;
}

P1065 作业调度方案的更多相关文章

  1. 洛谷P1065 作业调度方案

    P1065 作业调度方案 题目描述 我们现在要利用m台机器加工n个工件,每个工件都有m道工序,每道工序都在不同的指定的机器上完成.每个工件的每道工序都有指定的加工时间. 每个工件的每个工序称为一个操作 ...

  2. 洛谷 P1065 作业调度方案

    P1065 作业调度方案 题目描述 我们现在要利用 mm 台机器加工 nn 个工件,每个工件都有 mm 道工序,每道工序都在不同的指定的机器上完成.每个工件的每道工序都有指定的加工时间. 每个工件的每 ...

  3. P1065 作业调度方案——小模怡情,大模伤身

    P1065 作业调度方案 一个有点费手的“小”%%拟: 题都差点没读明白……: 每个机器所能完成的工序是不一样的: 每个物品完成工序的机器是指定的: 按照题面说的按时间轴推下去就行了: 没有时间上界有 ...

  4. [NOIP2006] 提高组 洛谷P1065 作业调度方案

    题目描述 我们现在要利用m台机器加工n个工件,每个工件都有m道工序,每道工序都在不同的指定的机器上完成.每个工件的每道工序都有指定的加工时间. 每个工件的每个工序称为一个操作,我们用记号j-k表示一个 ...

  5. NOIP2006 作业调度方案

    1.             作业调度方案 (jsp.pas/c/cpp) [问题描述] 我们现在要利用m台机器加工n个工件,每个工件都有m道工序,每道工序都在不同的指定的机器上完成.每个工件的每道工 ...

  6. 题解 【NOIP2006】作业调度方案

    [NOIP2006]作业调度方案 Description 我们现在要利用 m 台机器加工 n 个工件,每个工件都有 m 道工序,每道工序都在不同的指定的机器上完成.每个工件的每道工序都有指定的加工时间 ...

  7. 【题解】洛谷P1065 [NOIP2006TG] 作业调度方案(模拟+阅读理解)

    次元传送门:洛谷P1065 思路 简单讲一下用到的数组含义 work 第i个工件已经做了几道工序 num 第i个工序的安排顺序 finnish 第i个工件每道工序的结束时间 need 第i个工件第j道 ...

  8. [洛谷] P1065 [NOIP2006 提高组] 作业调度方案

    点击查看代码 #include<bits/stdc++.h> using namespace std; const int N = 1e6 + 10; int m, n, ans = 0; ...

  9. NOIp 2006 作业调度方案 Label:坑 模拟(tyvj你不给我ac,我就把名字献给附中oj)

    福建师大附中链接:http://218.5.5.242:9018/JudgeOnline/problem.php?id=1211 [问题描述] 我们现在要利用m台机器加工n个工件,每个工件都有m道工序 ...

随机推荐

  1. Qt 信号槽传递自定义结构体

    Qt 在信号和槽中使用自己定义的结构体

  2. [cogs347]地震

    COGS:地震(平衡树) COGS上一道题...文件名是equake 还是又打了一遍板子... 加个lazy标记就行了... 注意查询时先下传标记(lazy) // It is made by XZZ ...

  3. katalon系列十:Katalon Studio自定义关键字之拖拽

    Katalon Studio自带关键字“Drag And Drop To Object”,可以在这个网站实践:http://jqueryui.com/droppable/#default 不过“Dra ...

  4. Loadrunner教程--常用操做流程

    1loadrunner压力测试一般使用流程 1.1loadrunner压力测试原理 本质就是在loadrunner上模拟多个用户同时按固定行为访问web站点.其中固定行为在loadrunner中是通过 ...

  5. python实现lower_bound和upper_bound

    由于对于二分法一直都不是很熟悉,这里就用C++中的lower_bound和upper_bound练练手.这里用python实现 lower_bound和upper_bound本质上用的就是二分法,lo ...

  6. 标准版 Eclipse (Eclipse standard 4.3.3) 添加 Tomcat 支持

    步骤1:下载 Eclipse Tomcat 插件最新版:tomcatPluginV33.zip,官网下载最新版:http://www.eclipsetotale.com/tomcatPlugin.ht ...

  7. CF刷刷水题找自信 2

    CF 1114A  Got Any Grapes(葡萄)? 题目意思:给三个人分葡萄,三个人对葡萄的颜色有一些要求,问所准备的三种颜色的葡萄能否满足三人的要求. 解题意思:直接按条件判断即可. #in ...

  8. PSP DAILY软件功能说明书

    PSP DAILY软件功能说明书 一.开发背景 你在完成了一周的软件工程作业后,需要提交一个PSP图表,里面有4项,如下所示: 1.本周PSP表格,包含每项任务的开始.中断.结束.最终时间,格式如下: ...

  9. flask验证登录学习过程(1)---实践flask_jwt

    flask_jwt应用代码: from flask import Flask from flask_jwt import JWT,jwt_required,current_identity from ...

  10. mosquitto启动时Address already in use 和 一般的 Address already in use

    对于mosquitto启动时的地址占用错误,可能是mosquitto启动之后没关掉,进程一直占用了端口.查看mosquitto相关的进程,然后关掉就可启动了. 关掉mosquitto进程即可 参考: ...