kaggle-泰坦尼克号Titanic-3
根据以上两篇的分析,下面我们还要对数据进行处理,观察Age和Fare两个属性,乘客的数值变化幅度较大!根据逻辑回归和梯度下降的了解,如果属性值之间scale差距较大,将对收敛速度造成较大影响,甚至不收敛!因此,我们需要运用scikit-learn里面的preprocessing模块对Age和Fare两个属性做一个scaling,即将其数值转化为[-1,1]范围内。
# 接下来我们将一些变化幅度较大的特征化到[-1,1]之内,这样可以加速logistic regression的收敛
import sklearn.preprocessing as preprocessing
scaler = preprocessing.StandardScaler()
age_scale_param = scaler.fit(df['Age'])
df['Age_scaled'] = scaler.fit_transform(df['Age'],age_scale_param)
fare_scale_param = scaler.fit(df['Fare'])
df['Fare_scaled'] = scaler.fit_transform(df['Fare'],fare_scale_param)
print(df)
PassengerId |
Survived |
Age |
SibSp |
Parch |
Fare |
Cabin_No |
Cabin_Yes |
Embarked_C |
Embarked_Q |
Embarked_S |
Sex_female |
Sex_male |
Pclass_1 |
Pclass_2 |
Pclass_3 |
Age_scaled |
Fare_scaled |
|
0 |
1 |
0 |
22.000000 |
1 |
0 |
7.2500 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
-0.561417 |
-0.502445 |
1 |
2 |
1 |
38.000000 |
1 |
0 |
71.2833 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0.613177 |
0.786845 |
2 |
3 |
1 |
26.000000 |
0 |
0 |
7.9250 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
-0.267768 |
-0.488854 |
3 |
4 |
1 |
35.000000 |
1 |
0 |
53.1000 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
0.392941 |
0.420730 |
4 |
5 |
0 |
35.000000 |
0 |
0 |
8.0500 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
0.392941 |
-0.486337 |
5 |
6 |
0 |
23.828953 |
0 |
0 |
8.4583 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
-0.427149 |
-0.478116 |
6 |
7 |
0 |
54.000000 |
0 |
0 |
51.8625 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
1.787771 |
0.395814 |
7 |
8 |
0 |
2.000000 |
3 |
1 |
21.0750 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
-2.029659 |
-0.224083 |
8 |
9 |
1 |
27.000000 |
0 |
2 |
11.1333 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
-0.194356 |
-0.424256 |
9 |
10 |
1 |
14.000000 |
1 |
0 |
30.0708 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
-1.148714 |
-0.042956 |
10 |
11 |
1 |
4.000000 |
1 |
1 |
16.7000 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
-1.882835 |
-0.312172 |
11 |
12 |
1 |
58.000000 |
0 |
0 |
26.5500 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
2.081420 |
-0.113846 |
12 |
13 |
0 |
20.000000 |
0 |
0 |
8.0500 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
-0.708241 |
-0.486337 |
13 |
14 |
0 |
39.000000 |
1 |
5 |
31.2750 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
0.686589 |
-0.018709 |
14 |
15 |
0 |
14.000000 |
0 |
0 |
7.8542 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
-1.148714 |
-0.490280 |
15 |
16 |
1 |
55.000000 |
0 |
0 |
16.0000 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
1.861183 |
-0.326267 |
16 |
17 |
0 |
2.000000 |
4 |
1 |
29.1250 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
-2.029659 |
-0.061999 |
17 |
18 |
1 |
32.066493 |
0 |
0 |
13.0000 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0.177586 |
-0.386671 |
18 |
19 |
0 |
31.000000 |
1 |
0 |
18.0000 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
0.099292 |
-0.285997 |
19 |
20 |
1 |
29.518205 |
0 |
0 |
7.2250 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
-0.009489 |
-0.502949 |
20 |
21 |
0 |
35.000000 |
0 |
0 |
26.0000 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0.392941 |
-0.124920 |
21 |
22 |
1 |
34.000000 |
0 |
0 |
13.0000 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0.319529 |
-0.386671 |
22 |
23 |
1 |
15.000000 |
0 |
0 |
8.0292 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
-1.075302 |
-0.486756 |
23 |
24 |
1 |
28.000000 |
0 |
0 |
35.5000 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
-0.120944 |
0.066360 |
24 |
25 |
0 |
8.000000 |
3 |
1 |
21.0750 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
-1.589186 |
-0.224083 |
25 |
26 |
1 |
38.000000 |
1 |
5 |
31.3875 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
0.613177 |
-0.016444 |
26 |
27 |
0 |
29.518205 |
0 |
0 |
7.2250 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
-0.009489 |
-0.502949 |
27 |
28 |
0 |
19.000000 |
3 |
2 |
263.0000 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
-0.781653 |
4.647001 |
28 |
29 |
1 |
22.380113 |
0 |
0 |
7.8792 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
-0.533512 |
-0.489776 |
29 |
30 |
0 |
27.947206 |
0 |
0 |
7.8958 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
-0.124820 |
-0.489442 |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
861 |
862 |
0 |
21.000000 |
1 |
0 |
11.5000 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
-0.634829 |
-0.416873 |
862 |
863 |
1 |
48.000000 |
0 |
0 |
25.9292 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
1.347299 |
-0.126345 |
863 |
864 |
0 |
10.888325 |
8 |
2 |
69.5500 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
-1.377148 |
0.751946 |
864 |
865 |
0 |
24.000000 |
0 |
0 |
13.0000 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
-0.414592 |
-0.386671 |
865 |
866 |
1 |
42.000000 |
0 |
0 |
13.0000 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
0.906826 |
-0.386671 |
866 |
867 |
1 |
27.000000 |
1 |
0 |
13.8583 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
-0.194356 |
-0.369389 |
867 |
868 |
0 |
31.000000 |
0 |
0 |
50.4958 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
0.099292 |
0.368295 |
868 |
869 |
0 |
25.977889 |
0 |
0 |
9.5000 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
-0.269391 |
-0.457142 |
869 |
870 |
1 |
4.000000 |
1 |
1 |
11.1333 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
-1.882835 |
-0.424256 |
870 |
871 |
0 |
26.000000 |
0 |
0 |
7.8958 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
-0.267768 |
-0.489442 |
871 |
872 |
1 |
47.000000 |
1 |
1 |
52.5542 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
1.273886 |
0.409741 |
872 |
873 |
0 |
33.000000 |
0 |
0 |
5.0000 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
0.246117 |
-0.547748 |
873 |
874 |
0 |
47.000000 |
0 |
0 |
9.0000 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
1.273886 |
-0.467209 |
874 |
875 |
1 |
28.000000 |
1 |
0 |
24.0000 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
-0.120944 |
-0.165189 |
875 |
876 |
1 |
15.000000 |
0 |
0 |
7.2250 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
-1.075302 |
-0.502949 |
876 |
877 |
0 |
20.000000 |
0 |
0 |
9.8458 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
-0.708241 |
-0.450180 |
877 |
878 |
0 |
19.000000 |
0 |
0 |
7.8958 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
-0.781653 |
-0.489442 |
878 |
879 |
0 |
27.947206 |
0 |
0 |
7.8958 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
-0.124820 |
-0.489442 |
879 |
880 |
1 |
56.000000 |
0 |
1 |
83.1583 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1.934596 |
1.025945 |
880 |
881 |
1 |
25.000000 |
0 |
1 |
26.0000 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
-0.341180 |
-0.124920 |
881 |
882 |
0 |
33.000000 |
0 |
0 |
7.8958 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
0.246117 |
-0.489442 |
882 |
883 |
0 |
22.000000 |
0 |
0 |
10.5167 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
-0.561417 |
-0.436671 |
883 |
884 |
0 |
28.000000 |
0 |
0 |
10.5000 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
-0.120944 |
-0.437007 |
884 |
885 |
0 |
25.000000 |
0 |
0 |
7.0500 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
-0.341180 |
-0.506472 |
885 |
886 |
0 |
39.000000 |
0 |
5 |
29.1250 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0.686589 |
-0.061999 |
886 |
887 |
0 |
27.000000 |
0 |
0 |
13.0000 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
-0.194356 |
-0.386671 |
887 |
888 |
1 |
19.000000 |
0 |
0 |
30.0000 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
-0.781653 |
-0.044381 |
888 |
889 |
0 |
16.232379 |
1 |
2 |
23.4500 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
-0.984830 |
-0.176263 |
889 |
890 |
1 |
26.000000 |
0 |
0 |
30.0000 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
-0.267768 |
-0.044381 |
890 |
891 |
0 |
32.000000 |
0 |
0 |
7.7500 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
0.172705 |
-0.492378 |
891 rows × 18 columns
接下来我们把需要的feature字段取出来,转成numpy格式,使用scikit-learn中的LogisticRegression建模。
from sklearn import linear_model
train_df = df.filter(regex='Survived|Age_.*|SibSp|Parch|Fare_.*|Cabin_.*|Embarked_.*|Sex_.*|Pclass_.*')
train_np = train_df.as_matrix()
y = train_np[:,0]
X = train_np[:,1:]
clf = linear_model.LogisticRegression(C=1.0,penalty='l1',tol=1e-6)
clf.fit(X,y)
print(clf)
接下来我们需要对测试数据集和训练数据集做一样的操作
# #首先用同样的RandomForestRegressor模型填上丢失的年龄
data_test = pd.read_csv("test.csv")
data_test.loc[ (data_test.Fare.isnull()), 'Fare' ] = 0 tmp_df = data_test[['Age','Fare', 'Parch', 'SibSp', 'Pclass']]
null_age = tmp_df[data_test.Age.isnull()].as_matrix()
# 根据特征属性X预测年龄并补上
X = null_age[:, 1:]
predictedAges = rfr.predict(X)
data_test.loc[ (data_test.Age.isnull()), 'Age' ] = predictedAges data_test = set_Cabin_type(data_test)
dummies_Cabin = pd.get_dummies(data_test['Cabin'], prefix= 'Cabin')
dummies_Embarked = pd.get_dummies(data_test['Embarked'], prefix= 'Embarked')
dummies_Sex = pd.get_dummies(data_test['Sex'], prefix= 'Sex')
dummies_Pclass = pd.get_dummies(data_test['Pclass'], prefix= 'Pclass') df_test = pd.concat([data_test, dummies_Cabin, dummies_Embarked, dummies_Sex, dummies_Pclass], axis=1)
df_test.drop(['Pclass', 'Name', 'Sex', 'Ticket', 'Cabin', 'Embarked'], axis=1, inplace=True)
df_test['Age_scaled'] = scaler.fit_transform(df_test['Age'], age_scale_param)
df_test['Fare_scaled'] = scaler.fit_transform(df_test['Fare'], fare_scale_param) test = df_test.filter(regex='Age_.*|SibSp|Parch|Fare_.*|Cabin_.*|Embarked_.*|Sex_.*|Pclass_.*')
predictions = clf.predict(test)
result = pd.DataFrame({'PassengerId':data_test['PassengerId'].as_matrix(), 'Survived':predictions.astype(np.int32)})
result.to_csv("logistic_regression_predictions.csv", index=False)
最后我们将预测的结果保存在logistic_regression_predictions.csv文件里。到这里只是简单分析过后的一个baseline系统。
下面要判定一下当前模型所处状态(欠拟合或者过拟合)
这里面有个问题,前面不断地做特征工程,产生的特征越来越多,用这些特征来训练模型,会对训练集拟合得越来越好,同时也可能在逐步丧失泛化能力,从而在待测数据上表现不佳,也就是发生过拟合问题。
从另一个角度上说,如果模型在待测数据上表现不佳,除掉上述说的过拟合问题,有时候也存在欠拟合问题,也就是说在训练集上拟合的结果也不好。
对于过拟合和欠拟合,有两种优化方式:
1.过拟合
1)做一个feature selection,选较好的feature的subset来做training
2)提供更多的数据,从而弥补原始数据偏差,从而学习到的模型更准确
3)采用正则化,正则化方法包括L0正则、L1正则和L2正则,而正则一般是在目标函数之后加上对于的范数。但是在机器学习中一般使用L2正则。
2.欠拟合
1)添加其他特征项,有时候我们模型出现欠拟合的时候是因为特征项不够导致的,可以添加其他特征项来很好地解决。例如,“组合”、“泛化”、“相关性”三类特征是特征添加的重要手段。
2)添加多项式特征,这个在机器学习算法里面用的很普遍,例如将线性模型通过添加二次项或者三次项使模型泛化能力更强。
3)减少正则化参数,正则化的目的是用来防止过拟合的,但是现在模型出现了欠拟合,则需要减少正则化参数。
scikit-learn里面的learning curve可以帮助我们判定模型现在所处的状态。这里我们画一下最先得到的baseline model的learning curve。
import numpy as np
import matplotlib.pyplot as plt
from sklearn.learning_curve import learning_curve #用sklearn的learning_curve得到training_score和cv_score,使用matplotlib画出learning curve def plot_learning_curve(estimator,title,X,y,ylim=None,cv=None,n_jobs=1,train_sizes=np.linspace(.05,1.,20),verbose=0,plot=True):
"""
画出data在某模型上的learning curve.
参数解释
----------
estimator : 你用的分类器。
title : 表格的标题。
X : 输入的feature,numpy类型
y : 输入的target vector
ylim : tuple格式的(ymin, ymax), 设定图像中纵坐标的最低点和最高点
cv : 做cross-validation的时候,数据分成的份数,其中一份作为cv集,其余n-1份作为training(默认为3份)
n_jobs : 并行的的任务数(默认1)
"""
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes, verbose=verbose) train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1) if plot:
plt.figure()
plt.title(title)
if ylim is not None:
plt.ylim(*ylim)
plt.xlabel('train_sample')
plt.ylabel('score')
plt.gca().invert_yaxis()
plt.grid() plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std,
alpha=0.1, color="b")
plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std,
alpha=0.1, color="r")
plt.plot(train_sizes, train_scores_mean, 'o-', color="b", label="train_score")
plt.plot(train_sizes, test_scores_mean, 'o-', color="r", label="cross_validation_score") plt.legend(loc='best')
plt.draw()
plt.gca().invert_yaxis()
plt.show() midpoint = ((train_scores_mean[-1] + train_scores_std[-1]) + (test_scores_mean[-1] - test_scores_std[-1])) / 2
diff = (train_scores_mean[-1] + train_scores_std[-1]) - (test_scores_mean[-1] - test_scores_std[-1])
return midpoint, diff plot_learning_curve(clf, u"学习曲线", X, y)
结果如下(0.80656968448540245, 0.018258876711338634)
从得到的结果来看,尽管learn——curve没有理论推导的光滑,但是仍可以看出,训练集和交叉验证集上的得分曲线走势还是符合预期的。
目前的曲线来看,我们的model并不处于overfitting的状态(overfitting的表现一般是训练集得分高,交叉验证集得分低很多,中间的gap比较大)。因此我们可以再做些feature engineering的工作,添加一些新的特征或者组合特征到模型中。
kaggle-泰坦尼克号Titanic-3的更多相关文章
- 数据分析-kaggle泰坦尼克号生存率分析
概述 1912年4月15日,泰坦尼克号在首次航行期间撞上冰山后沉没,2224名乘客和机组人员中有1502人遇难.沉船导致大量伤亡的原因之一是没有足够的救生艇给乘客和船员.虽然幸存下来有一些运气因素,但 ...
- kaggle 泰坦尼克号问题总结
学习了机器学习这么久,第一次真正用机器学习中的方法解决一个实际问题,一步步探索,虽然最后结果不是很准确,仅仅达到了0.78647,但是真是收获很多,为了防止以后我的记忆虫上脑,我决定还是记录下来好了. ...
- 【项目实战】Kaggle泰坦尼克号的幸存者预测
前言 这是学习视频中留下来的一个作业,我决定根据大佬的步骤来一步一步完成整个项目,项目的下载地址如下:https://www.kaggle.com/c/titanic/data 大佬的传送门:http ...
- Kaggle入门——泰坦尼克号生还者预测
前言 这个是Kaggle比赛中泰坦尼克号生存率的分析.强烈建议在做这个比赛的时候,再看一遍电源<泰坦尼克号>,可能会给你一些启发,比如妇女儿童先上船等.所以是否获救其实并非随机,而是基于一 ...
- kaggle& titanic代码
这两天报名参加了阿里天池的’公交线路客流预测‘赛,就顺便先把以前看的kaggle的titanic的训练赛代码在熟悉下数据的一些处理.题目根据titanic乘客的信息来预测乘客的生还情况.给了titan ...
- kaggle Titanic心得
Titanic是kaggle上一个练手的比赛,kaggle平台提供一部分人的特征,以及是否遇难,目的是预测另一部分人是否遇难.目前抽工作之余,断断续续弄了点,成绩为0.79426.在这个比赛过程中,接 ...
- 我的第一个 Kaggle 比赛学习 - Titanic
背景 Titanic: Machine Learning from Disaster - Kaggle 2 年前就被推荐照着这个比赛做一下,结果我打开这个页面便蒙了,完全不知道该如何下手. 两年后,再 ...
- 机器学习案例学习【每周一例】之 Titanic: Machine Learning from Disaster
下面一文章就总结几点关键: 1.要学会观察,尤其是输入数据的特征提取时,看各输入数据和输出的关系,用绘图看! 2.训练后,看测试数据和训练数据误差,确定是否过拟合还是欠拟合: 3.欠拟合的话,说明模 ...
- 20151007kaggle Titanic心得
Titanic是kaggle上一个练手的比赛,kaggle平台提供一部分人的特征,以及是否遇难,目的是预测另一部分人是否遇难.目前抽工作之余,断断续续弄了点,成绩为0.79426.在这个比赛过程中,接 ...
- 如何做到机器学习竞赛Kaggle排名前2%
原创文章,同步首发自作者个人博客 .转载请务必在文章开头显眼处注明出处 摘要 本文详述了如何通过数据预览,探索式数据分析,缺失数据填补,删除关联特征以及派生新特征等方法,在Kaggle的Titanic ...
随机推荐
- Ztree小demo用于系统授权
本示例只做到指定id用户的拥有的权限回显,并能动态获得ztree中重新选择的权限id.(至于权限的更新,就是后台人员对象和权限对象建立关系的过程,不做展示) 第一步:拼写jsp页面(下载ztree包, ...
- Mysql5.6 buffer_pool预热功能
通常在mysql重启服务后,需要通过手工执行SQL来预热buffer_pool,在mysql5.6中,有如下参数可以无需人工干预. innodb_buffer_pool_dump_at_shutdow ...
- logback日志分开纪录
LogBack 日志 文件分开纪录 在处理Log中,我们一般讲Log分为一下几类,Debug类型,Error类型,Info类型 等等.. 那么使用LogBack如何分开日志处理 代码如下: 当然也可以 ...
- Java与SQL Server, MySql, Oracle, Access的连接方法以及一些异常解决
Java与SQL Server, MySql, Oracle, Access的连接方法以及一些异常解决 I. 概述 1.1 JDBC概念 JDBC(Java Database Connectivity ...
- Navicat Premium解决连接mssql报错的问题
连接名:mssql_172.16.30.21:1433,每次打开查询时就报错. 重启,重转都不好使. 解决办法:去掉“:1433”,因为文件目录不支持“:”,所以一直报错.问题终于得到解决.
- Envoy 源码分析--程序启动过程
目录 Envoy 源码分析--程序启动过程 初始化 main 入口 MainCommon 初始化 服务 InstanceImpl 初始化 启动 main 启动入口 服务启动流程 LDS 服务启动流程 ...
- javascript精髓篇之原型链维护和继承.
一.两个原型 很多人都知道javascript是原型继承,每个构造函数都有一个prototype成员,通过它就可以把javascript的继承演义的美轮美奂了. 其实啊,光靠这一个属性是无法完成jav ...
- ModelAttribute注解使用与spring重定向传参
@ModelAttribute可以用于修饰controller里的方法和参数,将被修饰的对象的值绑定到指定名称的属性里.当修饰方法时,方法返回的值会在该controller里每个访问处理前绑定一次.修 ...
- ES6系列_5之字符串模版
1.字符串模板对比引入: (1).之前我们也可以使用JavaScript输出模版字符串,通常是下面这样的: var restult= "姓名: <b>"+person. ...
- selenium webdriver——JS操作日历控件
一般的日期控件都是input标签下弹出来的,如果使用webdriver 去设置日期, 1. 定位到该input 2. 使用sendKeys 方法 比如 但是,有的日期控件是readonly的 比如12 ...