BSGS算法(Baby Steps Giant Steps算法,大步小步算法,北上广深算法,拔山盖世算法)

适用问题

对于式子:

$$x^y=z(mod_p)$$

已知x,z,p,p为质数;

求解一个最小非负整数y;



存在一个y,属于[0,p-2](费马小定理)

于是有了一个笨拙的方法,枚举y

枚举y,期望效率:O(P)

寻求一种优化:

对式子变型:

设:$$y=i\sqrt{p}-j$$

则$$x^{i\sqrt{p}-j}=z(mod_p)$$

——这个变型的用意在于把y拆开

枚举y,变成枚举,i,j;

i在1~$\sqrt{p}$之间,j在0~$\sqrt{p}$之间

(根号上取整,其实i,j的范围大可大些——只要保证y不会小于0)

枚举(i,j),期望效率:$O(\sqrt{p}*\sqrt{}p)$

本质上没有优化

接着变型:

$$x^{i\sqrt{p}}=z*x^{j}(mod_p)$$ 

——这个变型的用意在于真正把y分离为两部分

枚举j,把等号右边的模后得数置于hash_table,此时同一个得数只留最大的j值;

从小到大枚举i,计算等号左边的模后得数,查询hash_table,第一个成功查询的i,与其相应的j,组成$i\sqrt{p}-j$即为最小的y,

期望效率:$O(\sqrt{p}*T(hash))$

效率优异,拔山盖世的bsgs算法,就是这样了;



例题:

[SDOI2011]计算器

代码:

#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
const int ss=;
using namespace std;
int hash_tab[],tot;
struct ss{
int nu,next,j;
}data[];
void work();
void work1();
void work2();
void work3();
LL Sqr(LL ,int );
int hash(int, int ,int );
LL z,y,p;
bool flag;
int main()
{
work();
}
void work(){
int T,K;
scanf("%d%d",&T,&K);
while(T--){
scanf("%lld%lld%lld",&y,&z,&p);
if(K==)
work1();
if(K==)
work2();
if(K==)
work3();
}
}
void work1(){
int i,j,k;
printf("%lld\n",Sqr(y,z));
}
void work2(){
int ans,less;
if((!(y%p)&&z)||((y%p)&&!z)){
printf("Orz, I cannot find x!\n");return;
}
printf("%lld\n",Sqr(y%p,p-)*z%p);
}
void work3(){
long long ysqrtp,sqrtp=ceil(sqrt(p));
memset(hash_tab,,sizeof(hash_tab));
memset(data,,sizeof(data));
long long l=,r=z%p;
int i,j;
if((!(y%p)&&z)||((y%p)&&!z)){
printf("Orz, I cannot find x!\n");return;
}
ysqrtp=Sqr(y,sqrtp);
for(i=;i<=sqrtp;i++)
hash(r,i,),(r*=y)%=p;
for(i=;i<=sqrtp;i++){
(l*=ysqrtp)%=p;
if((j=hash(l,,))!=-){
printf("%lld\n",i*sqrtp-j);
return ;
}
}
printf("Orz, I cannot find x!\n");
}
LL Sqr(LL x,int n){
LL ret=;
while(n){
if(n&)(ret*=x)%=p;
(x*=x)%=p;n>>=;
}
return ret;
}
int hash(int num,int j,int flag){
int tem;
for(tem=hash_tab[num%ss];tem;tem=data[tem].next){
if(data[tem].nu==num){
if(!flag&&j>data[tem].j)
data[tem].j=j;
return data[tem].j;
}
if(!data[tem].next&&!flag){
data[tem].next=++tot;
data[tot].j=j;
data[tot].nu=num;
return -;
}
}
if(!flag){
hash_tab[num%ss]=++tot;
data[tot].j=j;
data[tot].nu=num;
}
return -;
}

bsgs(Baby Steps Giant Steps)算法的更多相关文章

  1. BSGS(Baby Steps,Giant Steps)算法详解

    BSGS(Baby Steps,Giant Steps)算法详解 简介: 此算法用于求解 Ax≡B(mod C): 由费马小定理可知: x可以在O(C)的时间内求解:  在x=c之后又会循环: 而BS ...

  2. 『高次同余方程 Baby Step Giant Step算法』

    高次同余方程 一般来说,高次同余方程分\(a^x \equiv b(mod\ p)\)和\(x^a \equiv b(mod\ p)\)两种,其中后者的难度较大,本片博客仅将介绍第一类方程的解决方法. ...

  3. 【学习笔记】Baby Step Giant Step算法及其扩展

    1. 引入 Baby Step Giant Step算法(简称BSGS),用于求解形如\(a^x\equiv b\pmod p\)(\(a,b,p\in \mathbb{N}\))的同余方程,即著名的 ...

  4. POJ 3243 Clever Y (求解高次同余方程A^x=B(mod C) Baby Step Giant Step算法)

    不理解Baby Step Giant Step算法,请戳: http://www.cnblogs.com/chenxiwenruo/p/3554885.html #include <iostre ...

  5. 解高次同余方程 (A^x=B(mod C),0<=x<C)Baby Step Giant Step算法

    先给出我所参考的两个链接: http://hi.baidu.com/aekdycoin/item/236937318413c680c2cf29d4 (AC神,数论帝  扩展Baby Step Gian ...

  6. HDU 2815 Mod Tree 离散对数 扩张Baby Step Giant Step算法

    联系:http://acm.hdu.edu.cn/showproblem.php?pid=2815 意甲冠军: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQ ...

  7. HDU 2815 扩展baby step giant step 算法

    题目大意就是求 a^x = b(mod c) 中的x 用一般的baby step giant step 算法会超时 这里参考的是http://hi.baidu.com/aekdycoin/item/2 ...

  8. BSGS算法_Baby steps giant steps算法(无扩展)详解

    Baby Steps-Varsity Giant Step-Astronauts(May'n・椎名慶治) 阅读时可以听听这两首歌,加深对这个算法的理解.(Baby steps少女时代翻唱过,这个原唱反 ...

  9. BSGS_Baby steps giant steps算法

    BSGS这个主要是用来解决这个题: A^x=B(mod C)(C是质数),都是整数,已知A.B.C求x. 在具体的题目中,C一般是所有可能事件的总数. 解: 设m = ceil(sqrt(C))(ce ...

随机推荐

  1. 结合业务,精炼SQL

    现代网站,性能的瓶颈都围绕着数据库的性能来谈.数据库是存储的核心部件,在日益增长的流量中会凸显数据库的性能瓶颈.从<淘宝技术十年>书中来看,淘宝发展历程中从MYSQL换成了ORACLE又换 ...

  2. Metal Programming Guide

    读苹果文档时的笔记,给自己看. primary goal of Metal is to minimize the CPU overhead incurred by executing GPU work ...

  3. SaltStack Pillar 详解

    简介 grains用于存储静态不易变更的数据,而pillar一般用于存储动态, 敏感的数据,通过minion和master设置或获取grains信息,而pillar信息只能在master端配置,在到m ...

  4. python3.6使用scrapy报错

    用python做爬虫的,肯定熟悉scrapy,不过新手安装总是会遇到各种奇葩错误. 错误一:building 'twisted.test.raiser' extensionerror: Microso ...

  5. 符合Python风格的对象

    array和bytes的转换 - 每个array必须有一个type_code,以此为依据解析底层字节序列 - array有一个frombytes方法,可以把字节序列按type_code转换成Array ...

  6. java中mongo的条件查询

    @Override public Page<ProductInfo> findAll(Pageable pageable, ProductInfo productInfo) { //创建一 ...

  7. switch case执行顺序

    public class SwitchCase { public static void main(String[] args) { System.out.println(switchFun(4)); ...

  8. 教你制作自己logo专属的图片

    说明:以下教程仅适合对图片分辨率要求不高的情况. 第一步:使用Windows自带的画图工具新建一个250像素*250像素的空白图片. 第二步:使用形状中的三角形,按住Shift键,将三角形拖拉至合适的 ...

  9. SpringMVC 的 切面

    官网路径:https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans 一:术语介绍 通知 ...

  10. c# timer使用

    C#里现在有3个Timer类: System.Windows.Forms.Timer System.Threading.Timer System.Timers.Timer 这三个Timer我想大家对S ...