题意

一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和。

dsu on tree

用来解决子树问题

好像不能带修改??

暴力做这个题,就是每次扫一遍子树统计答案

时间\(O(n^2)\)

或者会高级的数据结构解决

空间,编程难度是个挑战

然而\(dsu \ on \ tree\)树上启发式合并则是一个好方法

它通过增加对重儿子子树信息的利用来提高效率

流程:

递归轻儿子

递归重儿子

统计答案

如果该点为它父亲的重儿子,保存信息

否则删除信息

复杂度分析:

每个点被扫到的次数只有它到根的路径上轻边的次数*\(2\)次

也就是\(log\)次

那么总复杂度为空间\(O(n)\),时间\(O(nlogn)\)

该题代码

# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll; IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} const int maxn(1e5 + 5); int n, first[maxn], cnt, col[maxn], size[maxn], son[maxn], vis[maxn], num[maxn], mx;
ll sum[maxn], ans[maxn]; struct Edge{
int to, next;
} edge[maxn << 1]; IL void Add(RG int u, RG int v){
edge[cnt] = (Edge){v, first[u]}, first[u] = cnt++;
} IL void Dfs(RG int u, RG int ff){
size[u] = 1;
for(RG int e = first[u]; e != -1; e = edge[e].next){
RG int v = edge[e].to;
if(v != ff){
Dfs(v, u);
size[u] += size[v];
if(size[v] > size[son[u]]) son[u] = v;
}
}
} IL void Update(RG int u, RG int ff, RG int val){
sum[num[col[u]]] -= col[u];
num[col[u]] += val;
sum[num[col[u]]] += col[u];
if(val > 0) mx = max(mx, num[col[u]]);
else while(mx && !sum[mx]) --mx;
for(RG int e = first[u]; e != -1; e = edge[e].next)
if(edge[e].to != ff && !vis[edge[e].to]) Update(edge[e].to, u, val);
} IL void Solve(RG int u, RG int ff, RG int op){
size[u] = 1;
for(RG int e = first[u]; e != -1; e = edge[e].next)
if(edge[e].to != ff && edge[e].to != son[u]) Solve(edge[e].to, u, 0);
if(son[u]) Solve(son[u], u, 1), vis[son[u]] = 1;
Update(u, ff, 1), vis[son[u]] = 0;
ans[u] = sum[mx];
if(!op) Update(u, ff, -1);
} int main(){
n = Input();
for(RG int i = 1; i <= n; ++i) col[i] = Input(), first[i] = -1;
for(RG int i = 1; i < n; ++i){
RG int u = Input(), v = Input();
Add(u, v), Add(v, u);
}
Dfs(1, 0), Solve(1, 0, 1);
for(RG int i = 1; i <= n; ++i) printf("%lld ", ans[i]);
return 0;
}

dsu on tree(CF600E Lomsat gelral)的更多相关文章

  1. CF600E Lomsat gelral(dsu on tree)

    dsu on tree跟冰茶祭有什么关系啊喂 dsu on tree的模板题 思想与解题过程 类似树链剖分的思路 先统计轻儿子的贡献,再统计重儿子的贡献,得出当前节点的答案后再减去轻儿子对答案的贡献 ...

  2. cf600E. Lomsat gelral(dsu on tree)

    题意 题目链接 给出一个树,求出每个节点的子树中出现次数最多的颜色的编号和 Sol dsu on tree的裸题. 一会儿好好总结总结qwq #include<bits/stdc++.h> ...

  3. CF600E Lomsat gelral——线段树合并/dsu on tree

    题目描述 一棵树有$n$个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. 这个题意是真的窒息...具体意思是说,每个节点有一个颜色,你要找的是每个子树中颜色的众数 ...

  4. CF600E Lomsat gelral 和 CF741D Dokhtar-kosh paths

    Lomsat gelral 一棵以\(1\)为根的树有\(n\)个结点,每个结点都有一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号(若有数量一样的,则求编号和). \(n \le 10^ ...

  5. [CF600E]Lomsat gelral

    题意翻译 一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. 线段树合并板子题,没啥难度,注意开long long 不过这题$dsu$ $on$ $tre ...

  6. CF600E Lomsat gelral 树上启发式合并

    题目描述 有一棵 \(n\) 个结点的以 \(1\) 号结点为根的有根树. 每个结点都有一个颜色,颜色是以编号表示的, \(i\) 号结点的颜色编号为 \(c_i\)​. 如果一种颜色在以 \(x\) ...

  7. CF600E Lomsat gelral 【线段树合并】

    题目链接 CF600E 题解 容易想到就是线段树合并,维护每个权值区间出现的最大值以及最大值位置之和即可 对于每个节点合并一下两个子节点的信息 要注意叶子节点信息的合并和非叶节点信息的合并是不一样的 ...

  8. CF600E Lomsat gelral (启发式合并)

    You are given a rooted tree with root in vertex 1. Each vertex is coloured in some colour. Let's cal ...

  9. CF600E Lomsat gelral (dfs序+莫队)

    题面 题解 看到网上写了很多DSU和线段树合并的题解,笔者第一次做也是用的线段树合并,但在原题赛的时候却怕线段树合并调不出来,于是就用了更好想更好调的莫队. 这里笔者就说说莫队怎么做吧. 我们可以通过 ...

随机推荐

  1. Set的总结

    Set最重要的操作是查找,为查找而设计.存入HashSet的元素必须定义hashCode(); Set不保存重复的元素,元素必须唯一.通过equals()方法一确保对象的唯一性. Set中最常被用于归 ...

  2. [LibreOJ #2341]【WC2018】即时战略【交互】【LCT】

    Description 有一棵n个点的结构未知的树,初始时只有1号点是已被访问的. 你可以调用交互库的询问函数explore(x,y),其中x是已访问的点,y是任意点. 它会返回x向y方向走第一步的点 ...

  3. HDU - 6096 处理后缀的字典树

    题意:给定n个字符串,m次询问,每次询问多少个字符串前缀是pre且后缀是suf,前后缀不可相交 字典树同时存储前后缀,假设字符串长为len则更新2*len个节点,依次按s[0],s[len-1],s[ ...

  4. (四)Audio子系统之AudioRecord.read

      在上一篇文章<(三)Audio子系统之AudioRecord.startRecording>中已经介绍了AudioRecord如何开始录制音频,接下来,继续分析AudioRecord方 ...

  5. java transient 和Volatile关键字

    Volatile修饰的成员变量在每次被线程访问时,都强迫从主内存中重读该成员变量的值.而且,当成员变量发生变化时,强迫线程将变化值回写到主内存.这样在任何时刻,两个不同的线程总是看到某个成员变量的同一 ...

  6. Linux网络编程服务器模型选择之并发服务器(下)

    前面两篇文章(参见)分别介绍了循环服务器和简单的并发服务器网络模型,我们已经知道循环服务器模型效率较低,同一时刻只能为一个客户端提供服务,而且对于TCP模型来说,还存在单客户端长久独占与服务器的连接, ...

  7. zend studio 连PHP自带系统函数 常量都不提示

    如果是新建项目,所有PHP文件里面函数都是可以自带提示的. 但是,打开已经建立好的项目时候,貌似无法识别是PHP项目或者其他什么. 此时,在项目上点击: configure->add php s ...

  8. jmeter笔记

    Jmeter性能测试 入门 Jmeter 录制脚本:使用一个叫badbody的工具录制脚步供jmeter使用,http://www.badboy.com.au/:也可以用jmeter来录制 Jmete ...

  9. java多线程---------java.util.concurrent并发包

    所有已知相关的接口 1.BlockingDeque<E> 2.BlockingQueue<E> 3.Callable<V> 4.CompletionService& ...

  10. spingAOP在springMVC中的使用(我用在拦截controller中的方法。主要用于登录控制)

    首先截取了网上的一张配置execution的图片 我在项目中关于aop的配置:如果拦截controller的方法,需要在spring-mvc.xml文件中加入(如果在spring.xml中加入则无法拦 ...