1.后台生成矩阵

名词解释和下图参考:https://blog.csdn.net/csdnxcn/article/details/80057574

double[,] arr = new double[allVertices.Count(), allVertices.Count()]; //矩阵

//allVertices所有三维坐标点的集合

//lines 所有两点的连线

for (int i = 0; i < allVertices.Count(); i++)
{
for (int j = 0; j < allVertices.Count(); j++)
{
var start1 = allVertices[i].Point; //起点
var end1 = allVertices[j].Point; //终点
//lines 两点的连线集合
var line = lines.FirstOrDefault(ee => (ee.StartPoint == start1 && ee.EndPoint == end1)|| (ee.StartPoint == end1 && ee.EndPoint == start1/*起点终点互换*/));
if (start1 == end1)
{//同一个点
arr[i, j] = 0;
}
else
{
if (line != null)
{
arr[i, j] = double.Parse(line.Remark); //长度
}
else
{//两点未连接 此路不通
arr[i, j] =1.0/0.0; //Infinity
}
}
}
}

return arr;

2.dijkstra算法

/**
* Dijkstra算法
*
* @author wupanpan@baidu.com
* @date 2014-03-26
*/

/**
* @const
*/
var POS_INFINITY = Infinity;

/**
* @param {number} sourceV 源点的索引,从0开始
* @param {Array} adjMatrix 图的邻接矩阵,是一个二维数组
*/

function dijkstra(sourceV, adjMatrix) {
var set = [],
path = [],

dist = [];
distCopy = [],
vertexNum = adjMatrix.length;

var temp, u,
count = 0;

// 初始化
for (var i = 0; i < vertexNum; i++) {
distCopy[i] = dist[i] = POS_INFINITY;
set[i] = false;
}
distCopy[sourceV] = dist[sourceV] = 0;

while (count < vertexNum) {
u = distCopy.indexOf(Math.min.apply(Math, distCopy));
set[u] = true;
distCopy[u] = POS_INFINITY;

for (var i = 0; i < vertexNum; i++) {
if (!set[i] && ((temp = dist[u] + adjMatrix[u][i]) < dist[i])) {
distCopy[i] = dist[i] = temp;
path[i] = u;
}
}
count++;
}

return {
path: path,
dist: dist
};
}

/**
* @param {number} v 源点索引, 从0开始
* @param {number} d 非源点索引, 从0开始
* @param {Array} adjMatrix 图的邻接矩阵,是一个二维数组
*/
function searchPath(v, d, adjMatrix) {
var graph = dijkstra(v, adjMatrix),
path = graph.path,
dist = graph.dist;

var prev = path[d],
queue = [],
str = '';

queue.push(d);
while(prev != v) {
queue.push(prev);
prev = path[prev];
}
queue.push(v);

for (var j = queue.length - 1; j >= 0; j--) {
str +=queue.pop() + '->';
}
console.log('path',str);
var arr=str.split('->');
if(str.endsWith('->')){
arr.pop();
}
var rarr=[];//字符串数组转int数组
for(var i=0;i<arr.length;i++){
rarr.push(parseInt(arr[i]));
}
return rarr;
}

/**
* 测试数据
*/
var adjM = [
[0, 4, 2, POS_INFINITY, POS_INFINITY, POS_INFINITY],
[4, 0, 1, 5, POS_INFINITY, POS_INFINITY],
[2, 1, 0, 8, 10, POS_INFINITY],
[POS_INFINITY, 5, 8, 0, 2, 6],
[POS_INFINITY, POS_INFINITY, 10, 2, 0, 3],
[POS_INFINITY, POS_INFINITY, POS_INFINITY, 6, 3, 0]
];

3.使用算法求最短路径

5个点坐标如上图 虚线表示两点相连

1:  0,0,0
2:  1,1,0
3:  -1,-1,0
4:  2,0,0
5:  0,-1,0

请求后台生成的矩阵为:

var pathMatrix = [
[
0,
1.73,
1.73,
"Infinity",
1
],
[
1.73,
0,
"Infinity",
1.73,
"Infinity"
],
[
1.73,
"Infinity",
0,
"Infinity",
"Infinity"
],
[
"Infinity",
1.73,
"Infinity",
0,
2.23
],
[
1,
"Infinity",
"Infinity",
2.23,
0
]
];

var ret = searchPath(4, 1, pathMatrix); //从第5点到第2点的最短路径
console.log('index', ret);

(索引从0开始,对应到图上是 5->1->2)

4.使用threejs画出路径

(黑色连线;  红绿蓝为xyz辅助线)

geometryPoint = new THREE.BoxGeometry(0.2, 0.2, 0.2);
var materialPoint = new THREE.MeshBasicMaterial({
color: 0xff00ff,
side: THREE.DoubleSide
});
circlePoint1 = new THREE.Mesh(geometryPoint, materialPoint);
circlePoint1.position.set(0, 0, 0);
scene.add(circlePoint1);

circlePoint2 = circlePoint1.clone();
circlePoint2.position.set(1, 1, 0);
scene.add(circlePoint2);

circlePoint3 = circlePoint1.clone();
circlePoint3.position.set(-1, 1, 0);
scene.add(circlePoint3);

circlePoint4 = circlePoint1.clone();
circlePoint4.position.set(2, 0, 0);
scene.add(circlePoint4);

circlePoint5 = circlePoint1.clone();
circlePoint5.position.set(0, -1, 0);
scene.add(circlePoint5);

scene.add(new THREE.AxesHelper(300));

//画路径

var ret = searchPath(4, 1, pathMatrix);   //从第5点到第2点的最短路径
console.log('index', ret);

var geometry1 = new THREE.Geometry();
for (var i = 0; i < ret.length; i++) {
console.log("circlePoint" + (ret[i] + 1));
var pointObj = eval("circlePoint" + (ret[i] + 1));
console.log('position', pointObj.position);
geometry1.vertices.push(pointObj.position);
}
var line = new THREE.Line(geometry1, new THREE.LineBasicMaterial({
color: 'black'
}), THREE.LinePieces);
scene.add(line);

//补充

//threejs求三维两点的距离

var distance = circlePoint4.position.distanceTo(circlePoint5.position);
console.log(distance);

From:https://www.cnblogs.com/xuejianxiyang/p/9776319.html

js迪杰斯特拉算法求最短路径的更多相关文章

  1. C++迪杰斯特拉算法求最短路径

    一:算法历史 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以 ...

  2. 算法与数据结构(六) 迪杰斯特拉算法的最短路径(Swift版)

    上篇博客我们详细的介绍了两种经典的最小生成树的算法,本篇博客我们就来详细的讲一下最短路径的经典算法----迪杰斯特拉算法.首先我们先聊一下什么是最短路径,这个还是比较好理解的.比如我要从北京到济南,而 ...

  3. Dijkstra(迪杰斯特拉)算法求解最短路径

    过程 首先需要记录每个点到原点的距离,这个距离会在每一轮遍历的过程中刷新.每一个节点到原点的最短路径是其上一个节点(前驱节点)到原点的最短路径加上前驱节点到该节点的距离.以这个原则,经过N轮计算就能得 ...

  4. 图->最短路径->单源最短路径(迪杰斯特拉算法Dijkstra)

    文字描述 引言:如下图一个交通系统,从A城到B城,有些旅客可能关心途中中转次数最少的路线,有些旅客更关心的是节省交通费用,而对于司机,里程和速度则是更感兴趣的信息.上面这些问题,都可以转化为求图中,两 ...

  5. 迪杰斯特拉算法dijkstra(可打印最短路径)

    #include <iostream> #include <iomanip> #include <string> using namespace std; #def ...

  6. 最短路径之迪杰斯特拉算法的Java实现

    Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法.该算法被称为是“贪心算法”的成功典范.本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码. 一.知识准备 ...

  7. 图(最短路径算法————迪杰斯特拉算法和弗洛伊德算法).RP

    文转:http://blog.csdn.net/zxq2574043697/article/details/9451887 一: 最短路径算法 1. 迪杰斯特拉算法 2. 弗洛伊德算法 二: 1. 迪 ...

  8. c语言实现迪杰斯特拉算法(邻接表)

    储存结构,结构体的定义:(权值w用于表示两点间路径的花费) typedef int Status; typedef struct ENode//图的邻接表定义 { int adjVex;//任意顶点u ...

  9. 单源最短路径算法——Dijkstra算法(迪杰斯特拉算法)

    一 综述 Dijkstra算法(迪杰斯特拉算法)主要是用于求解有向图中单源最短路径问题.其本质是基于贪心策略的(具体见下文).其基本原理如下: (1)初始化:集合vertex_set初始为{sourc ...

随机推荐

  1. java简单的运算符和表达式

    1.运算符的运算级别分为很多层,第一层是(),括号的运算级别最高. 第二层是+,——,*,/,加,减,乘,除 第三层是==,等于号. 第四层是&&,||,或 与 且 && ...

  2. 使用python 模仿mybinlog 命令 二进制分析mysql binlog

    出处:黑洞中的奇点 的博客 http://www.cnblogs.com/kelvin19840813/ 您的支持是对博主最大的鼓励,感谢您的认真阅读.本文版权归作者所有,欢迎转载,但请保留该声明. ...

  3. linux C API连接并查询mysql5.7.9

    开发环境: ubuntu16.04 mysql5.7.9 原生C API VIM 配置远程连接 配置mysql允许远程连接的方法默认情况下,mysql只允许本地登录,如果要开启远程连接,则需要修改/e ...

  4. 39.oracle高级篇

    标题说是高级篇,其实也就是相对于基础篇来说的,也不是很深奥,自己平时工作中也都会用到,这里回忆的并不是特别冷门的知识,不要掉以轻心,以为“高级”就觉得工作中不会用到了. 一.select into 和 ...

  5. 把一个集合自定转成json字符串

    List<CityData> listData =new List<CityData>(); //把一个集合自定转成json字符串. foreach (var city in ...

  6. 【杂题】[LibreOJ 2541] 【PKUWC2018】猎人杀【生成函数】【概率与期望】

    Description 猎人杀是一款风靡一时的游戏"狼人杀"的民间版本,他的规则是这样的: 一开始有 n个猎人,第 i 个猎人有仇恨度 wi.每个猎人只有一个固定的技能:死亡后必须 ...

  7. 洛谷 P2480 [SDOI2010]古代猪文 题解【欧拉定理】【CRT】【Lucas定理】

    数论综合题. 题目背景 题目背景与题目无关因此省略.题目链接 题目描述 猪王国的文明源远流长,博大精深. iPig 在大肥猪学校图书馆中查阅资料,得知远古时期猪文文字总个数为 \(N\).当然,一种语 ...

  8. 20190415 OSX系统安装和配置maven

    1.下载maven包[apache-maven-3.6.0-bin.zip] 2.解压到准备安装的目录,我的在:/Users/apple/Documents/javasource/apache-mav ...

  9. python 并发协程

    一 引子 本节的主题是基于单线程来实现并发,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发,为此我们需要先回顾下并发的本质:切换+保存状态 cpu正在运行一个任务,会在两种情况下切走去 ...

  10. Mac下Homebrew安装的软件放在什么地方

    一般情况是这么操作的: 1.通过brew install安装应用最先是放在/usr/local/Cellar/目录下. 2.有些应用会自动创建软链接放在/usr/bin或者/usr/sbin,同时也会 ...