好开心又做出一道,看样子做数论一定要先看书,认认真真仔仔细细的看一下各种重要的性质 及其用途,然后第一次接触的题目 边想边看别人的怎么做的,这样做出第一道题目后,后面的题目就完全可以自己思考啦

设要+t次,列出方程  c*t-p*2^k=b-a(p是一个正整数,这里的内存相当于一个长度为2^k的圆圈,满了就重来一圈)

这样子就符合扩展欧几里德的方程基本式了

然后令  c*t-p*2^k=gcd(c,2^k);

gcd=exgcd(c,t0,2^l,p0);

解出t0;那么t=t0*(b-a)/gcd;

那么答案救出来了

#include<iostream>
#include<cstdio>
#include<list>
#include<algorithm>
#include<cstring>
#include<string>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<cmath>
#include<memory.h>
#include<set> #define ll long long
#define LL __int64
#define eps 1e-8 //const ll INF=9999999999999; #define M 400000100 #define inf 0xfffffff using namespace std; //vector<pair<int,int> > G;
//typedef pair<int,int> P;
//vector<pair<int,int>> ::iterator iter;
//
//map<ll,int>mp;
//map<ll,int>::iterator p; //vector<int>G[30012]; LL extgcd(LL a,LL &x,LL b,LL &y)
{
if(b==0)
{
x=1;
y=0;
return a;
}
LL r=extgcd(b,x,a%b,y);
LL t=x;
x=y;
y=t-a/b*y;
return r;
} int main(void)
{
LL a,b,c,k;
while(cin>>a>>b>>c>>k)
{
if(a+b+c+k == 0)
break;
LL MOD=(LL)1<<k;//这里要强制转化,坑了我好多遍,倒霉
LL t0,p0;
LL gcd=extgcd(c,t0,MOD,p0);
LL m=b-a;
if(m%gcd!=0)
{
puts("FOREVER");
continue;
}
LL t=(t0*m/gcd+MOD)%MOD;//这里一定要注意,最好每一道题目都加上MOD在模MOD,因为有可能t0值是负的
t=(t%(MOD/gcd)+(MOD/gcd))%(MOD/gcd);//这里要模的值要看清楚 是MODgcd,而不是MOD;
cout<<t<<endl;
}
}

poj2115 Looooops 扩展欧几里德的应用的更多相关文章

  1. POJ2115 C Looooops 扩展欧几里德

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ2115 题意 对于C的for(i=A ; i!=B ;i +=C)循环语句,问在k位存储系统中循环几次 ...

  2. poj 2115 C Looooops 扩展欧几里德

    C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 23616   Accepted: 6517 Descr ...

  3. poj2115-C Looooops(扩展欧几里德算法)

    本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...

  4. POJ2115——C Looooops(扩展欧几里德+求解模线性方程)

    C Looooops DescriptionA Compiler Mystery: We are given a C-language style for loop of type for (vari ...

  5. C Looooops(扩展欧几里德)

    C Looooops Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other) Total S ...

  6. POJ 2115 C Looooops (扩展欧几里德 + 线性同余方程)

    分析:这个题主要考察的是对线性同余方程的理解,根据题目中给出的a,b,c,d,不难的出这样的式子,(a+k*c) % (1<<d) = b; 题目要求我们在有解的情况下求出最小的解,我们转 ...

  7. POJ - 2115 C Looooops(扩展欧几里德求解模线性方程(线性同余方程))

    d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时 ...

  8. poj2142-The Balance(扩展欧几里德算法)

    一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...

  9. (扩展欧几里德算法)zzuoj 10402: C.机器人

    10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...

随机推荐

  1. windows mysql默认配置文件

    查询配置目录 select @@basedir; 查询数据目录 select @@datadir; 查询数据库编码 show variables like 'char% my.ini [mysql] ...

  2. innodb引擎对自增字段(auto_increment)的处理

    原文地址:https://dev.mysql.com/doc/refman/5.7/en/innodb-auto-increment-handling.html#innodb-auto-increme ...

  3. umount时目标忙解决办法

    标签(空格分隔): ceph ceph运维 osd 在删除osd后umount时,始终无法umonut,可以通过fuser查看设备被哪个进程占用,之后杀死进程,就可以顺利umount了. [root@ ...

  4. 20181205_C#窗体监听键盘事件

    1. 需要设置窗体的   KeyPreview = true; 2. 如果窗体上有获取的了焦点的button按钮, 则监听不到 Enter事件, 需要取消按钮的焦点

  5. 两个很经典的拓扑排序题目POJ3687+HDU1285

    一.题目链接 POJ:http://poj.org/problem?id=3687 HDU:http://acm.hdu.edu.cn/showproblem.php?pid=1285 二.思路 这两 ...

  6. 我对商业模式O2O的理解

    过这个文章不是来吐槽项目经理多麽困难的,而且对商业模式的一点心得和讨论. 在这个公司,从项目建设上讲,老实说贡献不是很大,做项目经理团队带的不好,当然小创业公司本身资源真的非常有限,自己也特别累,有老 ...

  7. application/json 和 application/x-www-form-urlencoded的区别

    public static string HttpPost(string url, string body) { //ServicePointManager.ServerCertificateVali ...

  8. 并发服务器和HTTP协议

    单进程服务器 1. 完成一个简单的TCP服务器 from socket import * serSocket = socket(AF_INET, SOCK_STREAM) # 重复使用绑定的信息 se ...

  9. StrConv 内码转换

    StrConv(string,conversion,LCID) string,预转换的字符串了(也可以使用byte数组). Conversion: 是一个整数,只决定转换方式,VB里定义了一些常量,如 ...

  10. 跟我学算法-图像识别之图像分类(下)(GoogleNet网络, ResNet残差网络, ResNext网络, CNN设计准则)

    1.GoogleNet 网络: Inception V1 - Inception V2 - Inception V3 - Inception V4 1. Inception v1 split - me ...