[codeforces 516]A. Drazil and Factorial
[codeforces 516]A. Drazil and Factorial
试题描述
Drazil is playing a math game with Varda.
Let's define
for positive integer x as a product of factorials of its digits. For example,
.
First, they choose a decimal number a consisting of n digits that contains at least one digit larger than 1. This number may possibly start with leading zeroes. Then they should find maximum positive number x satisfying following two conditions:
1. x doesn't contain neither digit 0 nor digit 1.
2.
=
.
Help friends find such number.
输入
The first line contains an integer n (1 ≤ n ≤ 15) — the number of digits in a.
The second line contains n digits of a. There is at least one digit in a that is larger than 1. Number a may possibly contain leading zeroes.
输出
输入示例
输出示例
数据规模及约定
见“输入”
题解
这个题相当有意思,我看 n 那么小,那一定是 dp 了,然而写完了才发现 F(a) 会爆 long long,所以只好另辟蹊径。后来发现一个性质:只要把 a 的每一位数都尽量的分出最多数出来,然后再拼到一起就好了,这个不难证明,就是个贪心,若将两个数的阶乘合并成一个数的阶乘,则答案会减少 1,一定不优。
现在的任务是把 2, 3, 4, ... , 9 这些 1 位数尽量多地分解,我发现刚刚的 dp 没有白写:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std; const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 6000010
#define maxk 20
int n, sum, fact[maxk], F[maxn], f[maxn][11];
char num[maxk];
bool vis[maxn]; bool Less(int* a, int* b) {
for(int i = 9; i >= 2; i--) if(a[i] != b[i])
return a[i] < b[i];
return 0;
} int main() {
n = read();
scanf("%s", num + 1); fact[0] = 1;
for(int i = 1; i <= 9; i++) fact[i] = fact[i-1] * i;
sum = 1;
for(int i = 1; i <= n; i++) sum *= fact[num[i]-'0'];
vis[1] = 1;
for(int i = 1; i <= sum; i++) if(vis[i]) {
// printf("%d ", i);
for(int k = 2; k <= 9 && fact[k] * i <= sum; k++) {
int t = fact[k] * i;
// printf("[%d]", t);
vis[t] = 1;
if(F[t] < F[i] + 1) {
F[t] = F[i] + 1;
memcpy(f[t], f[i], sizeof(f[i]));
f[t][k]++;
}
if(F[t] > F[i] + 1) continue;
f[i][k]++;
if(Less(f[t], f[i])) memcpy(f[t], f[i], sizeof(f[i]));
f[i][k]--;
}
} for(int i = 9; i >= 2; i--)
for(int j = 1; j <= f[sum][i]; j++)
putchar(i + '0');
putchar('\n'); return 0;
}
就依次输入,结果记一下,在主程序中打个表:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std; const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 20
int n, cnt[maxn];
char num[maxn]; int main() {
n = read();
scanf("%s", num + 1); for(int i = 1; i <= n; i++) {
if(num[i] == '9') {
cnt[7]++; cnt[3]++; cnt[3]++; cnt[2]++;
}
if(num[i] == '8') {
cnt[7]++; cnt[2]++; cnt[2]++; cnt[2]++;
}
if(num[i] == '7') {
cnt[7]++;
}
if(num[i] == '6') {
cnt[5]++; cnt[3]++;
}
if(num[i] == '5') {
cnt[5]++;
}
if(num[i] == '4') {
cnt[3]++; cnt[2]++; cnt[2]++;
}
if(num[i] == '3') {
cnt[3]++;
}
if(num[i] == '2') {
cnt[2]++;
}
} for(int i = 7; i >= 2; i--)
for(int j = 1; j <= cnt[i]; j++) putchar(i + '0');
putchar('\n'); return 0;
}
A 啦!
[codeforces 516]A. Drazil and Factorial的更多相关文章
- codeforces 515C C. Drazil and Factorial(水题,贪心)
题目链接: C. Drazil and Factorial time limit per test 2 seconds memory limit per test 256 megabytes inpu ...
- 【codeforces 515C】Drazil and Factorial
[题目链接]:http://codeforces.com/contest/515/problem/C [题意] 定义f(n)=n这个数各个位置上的数的阶乘的乘积; 给你a; 让你另外求一个不含0和1的 ...
- Codeforces Round #292 (Div. 1)A. Drazil and Factorial 构造
A. Drazil and Factorial 题目连接: http://codeforces.com/contest/516/problem/A Description Drazil is play ...
- CodeForces 515C. Drazil and Factorial
C. Drazil and Factorial time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Codeforces Round #292 (Div. 2) C. Drazil and Factorial 515C
C. Drazil and Factorial time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- CF Drazil and Factorial (打表)
Drazil and Factorial time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- Codeforces Round #292 (Div. 2) C. Drazil and Factorial
题目链接:http://codeforces.com/contest/515/problem/C 给出一个公式例如:F(135) = 1! * 3! * 5!; 现在给你一个有n位的数字a,让你求这样 ...
- codeforces 515C. Drazil and Factorial 解题报告
题目链接:http://codeforces.com/problemset/problem/515/C 题目意思:给出含有 n 个只有阿拉伯数字的字符串a(可能会有前导0),设定函数F(a) = 每个 ...
- CodeForces 516A Drazil and Factorial 动态规划
原文链接http://www.cnblogs.com/zhouzhendong/p/8990592.html 题目传送门 - CodeForces 516A 题意 对于一个正整数$x$,$f(x)=x ...
随机推荐
- 如何使用bat命令批量删除指定文件名字的符号
新建一个TXT文本,将下面的内容复制进去 @Echo Off&SetLocal ENABLEDELAYEDEXPANSIONFOR %%a in (*) do (set "name= ...
- 你需要管理员权限才能删除文件夹及服务器C盘不及批处理
Windows 7系统,管理员权限设置方法 一.选择文件夹或文件所有者 我们用鼠标右键点击要操作的文件或文件夹 - 属性: 在出现的文件夹属性窗口,我们用鼠标左键点击:安全: 我们用鼠标左键点击:高级 ...
- C#基础知识系列八(const和readonly关键字)
前言 不知道大家对const和readonly这两个关键字的区别有什么了解,原来自己之前还真不清楚它们到底是怎么回事,那么如果你也不是很清楚的话,可以一起来探讨一下.在了解这两个关键字的时候我们先来了 ...
- Beta版本的贡献率
陈志灏:负责ACTIVITY部分的编写,与服务器间数据交换,贡献率百分比:%30 尤志明:负责服务器PHP编写,以及一些JAVA编程方面的编译问题的解决,贡献率百分比:%40 周子淇:负责layout ...
- VS中两个常用辅助工具
一. 首当推荐的是DPack 下载地址:http://www.usysware.com/dpack/ 快捷键:以下都是个人常用的热键.其他还有,我都用得比较少了,3个已经完全够了 Alt+U 查找 ...
- Java设计模式-单例模式(Singleton)
单例对象(Singleton)是一种常用的设计模式.在Java应用中,单例对象能保证在一个JVM中,该对象只有一个实例存在.这样的模式有几个好处: 1.某些类创建比较频繁,对于一些大型的对象,这是一笔 ...
- Java基础-关键字-String
1.String的本质 线程安全 打开String的源码,类注释中有这么一段话“Strings are constant; their values cannot be changed after t ...
- ES6的模块、构建工具及应用的发布
作者:寸志链接:https://zhuanlan.zhihu.com/p/19569085来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 总的说来就是按照将来的标准书写 ...
- POJ3038 Flying Right
Description Figuring that they cannot do worse than the humans have, Farmer John's cows have decided ...
- USACO 3.2 ratios 高斯消元
题目原意很简单,就是解一个三元一次方程组 直接高斯消元解方程组,枚举最后一列的倍数(k) 注意double的精度,有很多细节需要处理 /* PROB:ratios LANG:C++ */ #inclu ...