[BZOJ2423][HAOI2010]最长公共子序列

试题描述

字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列<i0,i1,…,ik-1>,使得对所有的j=0,1,…,k-1,有xij = yj。例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。对给定的两个字符序列,求出他们最长的公共子序列长度,以及最长公共子序列个数。

输入

第1行为第1个字符序列,都是大写字母组成,以”.”结束。长度小于5000。

第2行为第2个字符序列,都是大写字母组成,以”.”结束,长度小于5000。

输出

第1行输出上述两个最长公共子序列的长度。

第2行输出所有可能出现的最长公共子序列个数,答案可能很大,只要将答案对100,000,000求余即可。

输入示例

ABCBDAB.
BACBBD.

输出示例


数据规模及约定

见“输入

题解

第一问是最裸的最长公共子序列dp;第二问须在第一问基础上加一个计数问题,设 f(i, j) 是第一个串到第 i 位,第二个串到第 j 位的最长公共子序列长度,g(i, j) 为 f(i, j) 取最大值时的方案数,那么只要保证上一步转移前也是最优的情况就可以了,注意减去重复的计数。

记得开滚动数组!

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std; const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = Getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); }
return x * f;
} #define maxn 5010
#define MOD 100000000
char A[maxn], B[maxn], cur;
int f[2][maxn], g[2][maxn]; int main() {
scanf("%s%s", A + 1, B + 1);
int na = strlen(A + 1), nb = strlen(B + 1);
A[na--] = '\0'; B[nb--] = '\0'; for(int i = 1; i <= nb; i++) g[0][i] = 1; g[0][0] = g[1][0] = 1;
for(int i = 1; i <= na; i++) {
cur ^= 1;
for(int j = 1; j <= nb; j++) {
f[cur][j] = max(f[cur^1][j], f[cur][j-1]);
if(A[i] == B[j]) f[cur][j] = max(f[cur][j], f[cur^1][j-1] + 1);
g[cur][j] = 0;
if(f[cur][j] == f[cur^1][j]) g[cur][j] += g[cur^1][j];
if(f[cur][j] == f[cur][j-1]) g[cur][j] += g[cur][j-1];
if(f[cur][j] == f[cur^1][j] && f[cur][j] == f[cur][j-1] && f[cur^1][j-1] == f[cur][j]) g[cur][j] -= g[cur^1][j-1];
if(A[i] == B[j] && f[cur][j] == f[cur^1][j-1] + 1) g[cur][j] += g[cur^1][j-1];
if(g[cur][j] > MOD) g[cur][j] %= MOD;
if(g[cur][j] < 0) g[cur][j] = (g[cur][j] % MOD) + MOD;
// printf("%d %d: %d %d\n", i, j, f[cur][j], g[cur][j]);
}
} printf("%d\n%d\n", f[cur][nb], g[cur][nb]); return 0;
}

[BZOJ2423][HAOI2010]最长公共子序列的更多相关文章

  1. BZOJ2423 HAOI2010最长公共子序列(动态规划)

    大讨论.注意去重. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib& ...

  2. 【BZOJ2423】[HAOI2010]最长公共子序列 DP

    [BZOJ2423][HAOI2010]最长公共子序列 Description 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字 ...

  3. 【BZOJ2423】最长公共子序列(动态规划)

    [BZOJ2423]最长公共子序列(动态规划) 题面 BZOJ 洛谷 题解 今天考试的时候,神仙出题人\(fdf\)把这道题目作为一个二合一出了出来,我除了orz还是只会orz. 对于如何\(O(n^ ...

  4. 2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组)

    2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组) https://www.luogu.com.cn/problem/P2516 题意: 给定字符串 \(S\) ...

  5. 【bzoj2423】最长公共子序列[HAOI2010](dp)

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2423 题目大意:求两个字符串的最长公共子序列长度和最长公共子序列个数. 这道题的话,对于 ...

  6. bzoj:2423: [HAOI2010]最长公共子序列

    Description 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0, ...

  7. [HAOI2010]最长公共子序列(LCS+dp计数)

    字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X ...

  8. 洛谷P2516 [HAOI2010]最长公共子序列(LCS,最短路)

    洛谷题目传送门 一进来就看到一个多月前秒了此题的ysn和YCB%%% 最长公共子序列的\(O(n^2)\)的求解,Dalao们想必都很熟悉了吧!不过蒟蒻突然发现,用网格图貌似可以很轻松地理解这个东东? ...

  9. LG2516 【[HAOI2010]最长公共子序列】

    前言 感觉这几篇仅有的题解都没说清楚,并且有些还是错的,我再发一篇吧. 分析 首先lcs(最长公共子序列)肯定是板子.但这题要求我们不能光记lcs是怎么打的,因为没这部分分,并且另外一个方程的转移要用 ...

随机推荐

  1. WCF 入门 (21)

    前言 再不写一篇就太监了,哈哈. 第21集 WCF里面的Binding Bindings in WCF 其实不太了解为什么第21集才讲这个Binding,下面都是一些概念性的东西,不过作为一个入门视频 ...

  2. UITableViewdataSourse的协议所有方法

    UITableViewDataSource @required- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection ...

  3. “耐撕”团队 2016.04.07 站立会议

    1. 时间: 20:00--20:15  共计20分钟. 2. 成员: Z 郑蕊 * 组长 (博客:http://www.cnblogs.com/zhengrui0452/), P 濮成林(博客:ht ...

  4. 软工实践练习一(个人)----将Androidstudio的项目共享到github

    在Androidstudio上使用git插件 将项目共享至github 将 显示共享成功但是出了点问题 项目文件并没有上传至github库中,而是只创建了一个新的库 问题在于我的gitforwindo ...

  5. 史上最全的HTML、CSS知识点总结,浅显易懂。

    来源于:http://blog.csdn.net/qiushi_1990/article/details/40260447 一,html+css基础1-1Html和CSS的关系学习web前端开发基础技 ...

  6. javascript this 详解

    前言 Javascript是一门基于对象的动态语言,也就是说,所有东西都是对象,一个很典型的例子就是函数也被视为普通的对象.Javascript可以通过一定的设计模式来实现面向对象的编程,其中this ...

  7. hdu1247 字典树

    开始以为枚举会超时,因为有50000的词.后来试了一发就过了.哈哈.枚举没一个单词,将单词拆为2半,如果2半都出现过,那就是要求的. #include<stdio.h> #include& ...

  8. Spring-事物-不依赖应用服务器的开源JTA事物实现

    不依赖应用服务器的开源JTA事物实现JOTM和Atomikos Transactions JOTM 即基于Java开放事务管理器(Java Open Transaction Manager),实现JT ...

  9. Java基础-父类-子类执行顺序

    代码解析 子类 package com; /** * 子类 * @author huage * */ public class Test extends Test1{ public static vo ...

  10. Android Fresco (Facebook开源的图片加载管理库)

    Fresco是Facebook开源的一个图片加载和管理库. 这里是Fresco的GitHub网址. 同类型的开源库市面有非常多,比如Picasso, Universal Image Loader, G ...