http://www.cnblogs.com/LBSer/p/4119841.html

1 lucene字典

使用lucene进行查询不可避免都会使用到其提供的字典功能,即根据给定的term找到该term所对应的倒排文档id列表等信息。实际上lucene索引文件后缀名为tim和tip的文件实现的就是lucene的字典功能。

怎么实现一个字典呢?我们马上想到排序数组,即term字典是一个已经按字母顺序排序好的数组,数组每一项存放着term和对应的倒排文档id列表。每次载入索引的时候只要将term数组载入内存,通过二分查找即可。这种方法查询时间复杂度为Log(N),N指的是term数目,占用的空间大小是O(N*str(term))。排序数组的缺点是消耗内存,即需要完整存储每一个term,当term数目多达上千万时,占用的内存将不可接受。

2 常用字典数据结构

很多数据结构均能完成字典功能,总结如下。

数据结构 优缺点
排序列表Array/List 使用二分法查找,不平衡
HashMap/TreeMap 性能高,内存消耗大,几乎是原始数据的三倍
Skip List 跳跃表,可快速查找词语,在lucene、redis、Hbase等均有实现。相对于TreeMap等结构,特别适合高并发场景(Skip List介绍
Trie 适合英文词典,如果系统中存在大量字符串且这些字符串基本没有公共前缀,则相应的trie树将非常消耗内存(数据结构之trie树
Double Array Trie 适合做中文词典,内存占用小,很多分词工具均采用此种算法(深入双数组Trie
Ternary Search Tree 三叉树,每一个node有3个节点,兼具省空间和查询快的优点(Ternary Search Tree
Finite State Transducers (FST) 一种有限状态转移机,Lucene 4有开源实现,并大量使用

3 FST原理简析

lucene从4开始大量使用的数据结构是FST(Finite State Transducer)。FST有两个优点:1)空间占用小。通过对词典中单词前缀和后缀的重复利用,压缩了存储空间;2)查询速度快。O(len(str))的查询时间复杂度。

下面简单描述下FST的构造过程(工具演示:http://examples.mikemccandless.com/fst.py?terms=&cmd=Build+it%21)。我们对“cat”、 “deep”、 “do”、 “dog” 、“dogs”这5个单词进行插入构建FST(注:必须已排序)。

1)插入“cat”

插入cat,每个字母形成一条边,其中t边指向终点。

2)插入“deep”

与前一个单词“cat”进行最大前缀匹配,发现没有匹配则直接插入,P边指向终点。

3)插入“do”

与前一个单词“deep”进行最大前缀匹配,发现是d,则在d边后增加新边o,o边指向终点。

4)插入“dog”

与前一个单词“do”进行最大前缀匹配,发现是do,则在o边后增加新边g,g边指向终点。

5)插入“dogs”

与前一个单词“dog”进行最大前缀匹配,发现是dog,则在g后增加新边s,s边指向终点。

最终我们得到了如上一个有向无环图。利用该结构可以很方便的进行查询,如给定一个term “dog”,我们可以通过上述结构很方便的查询存不存在,甚至我们在构建过程中可以将单词与某一数字、单词进行关联,从而实现key-value的映射。

4 FST使用与性能评测

我们可以将FST当做Key-Value数据结构来进行使用,特别在对内存开销要求少的应用场景。Lucene已经为我们提供了开源的FST工具,下面的代码是使用说明。

 public static void main(String[] args) {
try {
String inputValues[] = {"cat", "deep", "do", "dog", "dogs"};
long outputValues[] = {5, 7, 17, 18, 21};
PositiveIntOutputs outputs = PositiveIntOutputs.getSingleton(true);
Builder<Long> builder = new Builder<Long>(FST.INPUT_TYPE.BYTE1, outputs);
BytesRef scratchBytes = new BytesRef();
IntsRef scratchInts = new IntsRef();
for (int i = 0; i < inputValues.length; i++) {
scratchBytes.copyChars(inputValues[i]);
builder.add(Util.toIntsRef(scratchBytes, scratchInts), outputValues[i]);
}
FST<Long> fst = builder.finish();
Long value = Util.get(fst, new BytesRef("dog"));
System.out.println(value); //
} catch (Exception e) {
;
}
}

FST压缩率一般在3倍~20倍之间,相对于TreeMap/HashMap的膨胀3倍,内存节省就有9倍到60倍!(摘自:把自动机用作 Key-Value 存储),那FST在性能方面真的能满足要求吗?

下面是我在苹果笔记本(i7处理器)进行的简单测试,性能虽不如TreeMap和HashMap,但也算良好,能够满足大部分应用的需求。

参考文献

http://sbp810050504.blog.51cto.com/2799422/1361551

http://blog.sina.com.cn/s/blog_4bec92980101hvdd.html

http://blog.mikemccandless.com/2013/06/build-your-own-finite-state-transducer.html

http://examples.mikemccandless.com/fst.py?terms=mop%2F0%0D%0Amoth%2F1%0D%0Apop%2F2%0D%0Astar%2F3%0D%0Astop%2F4%0D%0Atop%2F5%0D%0Atqqq%2F6&cmd=Build+it%21

检索实践文章系列:

lucene索引文件大小优化小结

lucene join解决父子关系索引

排序学习实践

lucene如何通过docId快速查找field字段以及最近距离等信息?

lucene字典实现原理的更多相关文章

  1. lucene字典实现原理——FST

    转自:http://www.cnblogs.com/LBSer/p/4119841.html 1 lucene字典 使用lucene进行查询不可避免都会使用到其提供的字典功能,即根据给定的term找到 ...

  2. lucene字典实现原理(转)

    原文:https://www.cnblogs.com/LBSer/p/4119841.html 1 lucene字典 使用lucene进行查询不可避免都会使用到其提供的字典功能,即根据给定的term找 ...

  3. Elasticsearch Lucene 数据写入原理 | ES 核心篇

    前言 最近 TL 分享了下 <Elasticsearch基础整理>https://www.jianshu.com/p/e8226138485d ,蹭着这个机会.写个小文巩固下,本文主要讲 ...

  4. iOS 字典实现原理

    在目前的开发中,NSDictionary是经常被使用,不过很少人会研究字典NSDictionary底层的实现,下面我们来一起看一下NSDictionary的实现原理. 一.字典原理 字典通过使用- ( ...

  5. 03.什么是Lucene全文检索的原理01

    全文检索的原理:查询速度快,精准度高,可以根据相关度进行排序.它的原理是:先把内容分词,分词之后建索引. Lucene是apache下的一个开放源代码的全文检索引擎工具包. 提供了完整的查询引擎和索引 ...

  6. 42 (OC)* 字典实现原理--哈希原理

    一.NSDictionary使用原理 1.NSDictionary(字典)是使用 hash表来实现key和value之间的映射和存储的,hash函数设计的好坏影响着数据的查找访问效率. - (void ...

  7. lucene索引文件大小优化小结

    http://www.cnblogs.com/LBSer/p/4068864.html 随着业务快速发展,基于lucene的索引文件zip压缩后也接近了GB量级,而保持索引文件大小为一个可以接受的范围 ...

  8. lucene join解决父子关系索引

    http://www.cnblogs.com/LBSer/p/4417074.html 1 背景 以商家(Poi)维度来展示各种服务(比如团购(deal).直连)正变得越来越流行(图1a), 比如目前 ...

  9. lucene如何通过docId快速查找field字段以及最近距离等信息?

    http://www.cnblogs.com/LBSer/p/4419052.html 1 问题描述 我们的检索排序服务往往需要结合个性化算法来进行重排序,一般来说分两步:1)进行粗排序,这一过程由检 ...

随机推荐

  1. 转 苹果的新编程语言 Swift 简介

    苹果官方文档地址 https://developer.apple.com/library/prerelease/ios/documentation/Swift/Conceptual/Swift_Pro ...

  2. 在线学习体验大PK 云智慧发布在线教育网站性能监测报告

    互联网不但改变了我们的生活.娱乐和消费方式,也推动各行各业进行着快速变革,越来越多的职场人士必须通过不断的学习.充电才能跟上行业发展的步伐,获得职业的提升,而这也引发了国内教育市场的爆炸式发展.据统计 ...

  3. 手机抓包xcode自带命令行工具配合wireshark实现

    三.最佳方式:rvictl命令 优点:简单,而且可以抓所有网络接口的数据: 缺点:似乎没有,要求手机iOS5以上不算要求吧?如果说缺点,就是这个命令是Xcode的Command Line Tools ...

  4. oracle学习-存储过程返回一个值,和返回一个结果集

    一.返回一个值 --创建存储过程 create or replace procedure sp_hu_test(spcode in varchar2,spname out varchar2)is be ...

  5. python学习之——计算文件行数

    # -*- coding: cp936 -*- #转载源于:http://blog.csdn.net/houyj1986/article/details/21196027 #计算文件行数 #1.文件比 ...

  6. Asp.Net MVC4入门指南(3):添加一个视图

    在本节中,您需要修改HelloWorldController类,从而使用视图模板文件,干净优雅的封装生成返回到客户端浏览器HTML的过程. 您将创建一个视图模板文件,其中使用了ASP.NET MVC ...

  7. 验证码(网页的某些图片)在ie 360不显示,在火狐下显示正常

    解决办法: 开始->运行,在运行输入框中输入“regsvr32 c:\windows\system32\pngfilt.dll”(不包含双引号),然后点击确定,如果在出现“已加载c:\windo ...

  8. SDN 收集一下最近的资料

      SDN导论 SDN原理(Openflow)视频 SDN lab SDN Openflow(北航入门简介) 书籍 <深度解析SDN-利益.战略.技术.实践> -张卫峰

  9. fastjson生成和解析json数据,序列化和反序列化数据

    本文讲解2点: 1. fastjson生成和解析json数据 (举例:4种常用类型:JavaBean,List<JavaBean>,List<String>,List<M ...

  10. SPOJ BOXES

    给出n个循环位置,每个位置有一定数量的盒子,每次操作可以使一个盒子转移到相邻位置,问最少需要转移多少次使得所有位置上的盒子的数量不会超过1个. 简单题.对于每个位置,加边(s,i,a[i],0),(i ...