HDU4901 The Romantic Hero 计数DP
2014多校4的1005
题目:http://acm.hdu.edu.cn/showproblem.php?pid=4901
The Romantic HeroTime Limit: 6000/3000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Total Submission(s): 393 Accepted Submission(s): 150 Problem Description
There is an old country and the king fell in love with a devil. The devil always asks the king to do some crazy things. Although the king used to be wise and beloved by his people. Now he is just like a boy in love and can’t refuse any request from the devil. Also, this devil is looking like a very cute Loli.
You may wonder why this country has such an interesting tradition? It has a very long story, but I won't tell you :). Let us continue, the party princess's knight win the algorithm contest. When the devil hears about that, she decided to take some action. But before that, there is another party arose recently, the 'MengMengDa' party, everyone in this party feel everything is 'MengMengDa' and acts like a 'MengMengDa' guy. While they are very pleased about that, it brings many people in this kingdom troubles. So they decided to stop them. Our hero z*p come again, actually he is very good at Algorithm contest, so he invites the leader of the 'MengMengda' party xiaod*o to compete in an algorithm contest. As z*p is both handsome and talkative, he has many girl friends to deal with, on the contest day, he find he has 3 dating to complete and have no time to compete, so he let you to solve the problems for him. And the easiest problem in this contest is like that: There is n number a_1,a_2,...,a_n on the line. You can choose two set S(a_s1,a_s2,..,a_sk) and T(a_t1,a_t2,...,a_tm). Each element in S should be at the left of every element in T.(si < tj for all i,j). S and T shouldn't be empty. And what we want is the bitwise XOR of each element in S is equal to the bitwise AND of each element in T. How many ways are there to choose such two sets? You should output the result modulo 10^9+7. Input
The first line contains an integer T, denoting the number of the test cases. For each test case, the first line contains a integers n. The next line contains n integers a_1,a_2,...,a_n which are separated by a single space.
n<=10^3, 0 <= a_i <1024, T<=20. Output
For each test case, output the result in one line.
Sample Input
2
3 1 2 3 4 1 2 3 3 Sample Output
1
4 Author
WJMZBMR
Source
Recommend
|
题意:
给一列数,让你选两个集合,A集合所有元素下标小于B集合所有元素下标,A集合的所有元素异或等于B集合所有元素AND,两个集合都非空,求集合元素有多少种选法,MOD 10^9+7。0<=元素大小<1024,最多1000个元素。
题解:
DP!(虽然我一开始就想到DP,不过我DP功力太差,比赛中实在做不出,结束后看了http://www.cnblogs.com/avema/p/3881466.html的超快题解(虽然没写题解只有代码)才学会的)
官方题解居然是这样的“水题,大家都会做吧?”我都怕了!虽然很多人过了,好像的确很水的样子……
言归正传,我来讲一下这个DP。
f[i][j]:由0~i的元素异或得到j的种类数。
h[i][j]:由i~n-1的元素AND得到j的种类数。
g[i][j]:由i~n-1的元素,且一定包含i,AND得到j的种类数。
求出这些,最后把f[i][j]*g[i+1][j]求和就得到答案了!
这里用g而不用h,防止重复计数,非常高端。我写的时候也一直在考虑防止重复计数,结果写出来4重循环,我自己都怕,看来是我对DP的理解不够深。这个只用两重循环,快得飞起来。具体实现看代码吧,还算比较简单易懂。
代码:
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<math.h> #define ll __int64
#define usint unsigned int
#define mz(array) memset(array, 0, sizeof(array))
#define RE freopen("1.in","r",stdin)
#define WE freopen("mask.txt","w",stdout) #define maxa 1024
#define maxn 1000
#define C 1000000007 int f[maxn-][maxa],g[maxn][maxa],h[maxn][maxa]; int main() { int a[maxn],T,n;
short i,j,t;
int ans;
scanf("%d",&T);
while(T--) {
scanf("%d",&n);
for(i=; i<n; i++)
scanf("%d",&a[i]);
mz(f);
mz(g);
mz(h);
f[][a[]]=;
for(i=; i<n-; i++) {
f[i][a[i]]++;///单独一个元素的集合的情况
for(j=; j<maxa; j++) {
if(f[i-][j]) {
f[i][j]+=f[i-][j];///继承之前算好的情况(就是 不包括当前元素的情况)
f[i][j]%=C;
t=j^a[i];
f[i][t]+=f[i-][j];///由前一次的情况异或当前元素得到的情况(包括当前元素的情况)
f[i][t]%=C;
} }
} g[n-][a[n-]]=;
h[n-][a[n-]]=;
for(i=n-; i>; i--) {
g[i][a[i]]++;
h[i][a[i]]++;
for(j=; j<maxa; j++) {
if(h[i+][j]) {
h[i][j]+=h[i+][j];
h[i][j]%=C;
t=j&a[i];
h[i][t]+=h[i+][j];
h[i][t]%=C; g[i][t]+=h[i+][j];///包括当前元素的情况(g没有不包括当前元素的情况)
g[i][t]%=C;
} }
}
ans=;
for(i=; i<n-; i++)
for(j=; j<maxa; j++) {
if(f[i][j]&&g[i+][j]) {
ans+=(((ll)f[i][j])*(g[i+][j])%C);
ans%=C;
}
}
printf("%d\n",ans);
}
return ;
}
这次来个C的代码,酷不酷炫(其实没有类都可以换成C的吧
HDU4901 The Romantic Hero 计数DP的更多相关文章
- HDU - 4901 The Romantic Hero(dp)
https://vjudge.net/problem/HDU-4901 题意 给n个数,构造两个集合,使第一个集合的异或和等于第二个集合的相与和,且要求第一个集合的元素下标都小于第二个集合的元素下标. ...
- 2014多校第四场1005 || HDU 4901 The Romantic Hero (DP)
题目链接 题意 :给你一个数列,让你从中挑选一些数组成集合S,挑另外一些数组成集合T,要求是S中的每一个数在原序列中的下标要小于T中每一个数在原序列中下标.S中所有数按位异或后的值要与T中所有的数按位 ...
- HDU 4901(杭电多校训练#3 1005题)The Romantic Hero(DP)
题目地址:HDU 4901 这题没想到最后竟然可以做出来.. .. 这题用了两次DP,先从前往后求一次异或的.再从后往前求一次与运算的. 各自是 1:求异或的时候,定义二维数组huo[1000][10 ...
- HDU 4901 The Romantic Hero (计数DP)
The Romantic Hero 题目链接: http://acm.hust.edu.cn/vjudge/contest/121349#problem/E Description There is ...
- HDU 4901 The Romantic Hero(二维dp)
题目大意:给你n个数字,然后分成两份,前边的一份里面的元素进行异或,后面的一份里面的元素进行与.分的时候依照给的先后数序取数,后面的里面的全部的元素的下标一定比前面的大.问你有多上种放元素的方法能够使 ...
- HDU 4901 The Romantic Hero 题解——S.B.S.
The Romantic Hero Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Othe ...
- HDOJ 4901 The Romantic Hero
DP....扫两次合并 The Romantic Hero Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 131072/131072 ...
- HDU 4901 The Romantic Hero
The Romantic Hero Time Limit: 3000MS Memory Limit: 131072KB 64bit IO Format: %I64d & %I64u D ...
- HDU5800 To My Girlfriend 背包计数dp
分析:首先定义状态dp[i][j][s1][s2]代表前i个物品中,选若干个物品,总价值为j 其中s1个物品时必选,s2物品必不选的方案数 那么转移的时候可以考虑,第i个物品是可选可可不选的 dp[i ...
随机推荐
- ajax traditional
代码如下: <script> $(function () { var s = Array("1", "2", "3"); var ...
- Dropbox的可用Hosts文件
108.160.167.203 www.dropbox.com 108.160.167.203 dropbox.com 108.160.165.211 dl-client677.dropbox.com ...
- Git.Framework 框架随手记--IIS7运行序列化问题
客户反馈系统又登录不了,这是最近几次连续出现相同的问题,从日志反应情况来看: 日志级别:[info] 日志位置:Git.Framework.Resource.ResourceManager 日志时间: ...
- vitualbox 主机与虚拟机能相互访问的设置
1. 桥接网卡 2. 界面名称:802.11n USB Wireless Lan Card 3. 混杂模式:全部允许 4. 接入网线打勾 5. 确定
- iptables 的使用
iptables 是Linux 防火墙规则配置命令 iptables -L -n 查看目前配置 iptables -F 清除预设表filter中的所有规则链的规则 iptables -A ...
- node的实践(项目三)
渲染前台的方式. <!DOCTYPE html> <html> <head> <meta http-equiv="content-type" ...
- 第六章:Javascript对象
对象是javascript的基本数据类型.对象是一种复合值.它将很多值(原始值 或者其他对象)聚合在一起.可通过名字访问这些值.对象也可以看做是属性的无序集合,每个属性都有一个名/值.属性名是字符串, ...
- iOS开发小技巧--边接受数据边写入文件的两种方法
一.NSFileHanle 使用注意点:在往文件写入数据时,必须创建一个空的文件 指定文件写入的方式 -- 覆盖还是追加 最后记得关闭 <1>代码是在大文件传输的练习中截取的.写入数据之前 ...
- replace和replaceAll的区别
replace和replaceAll是JAVA中常用的替换字符的方法,它们的区别是: 1)replace的参数是char和CharSequence,即可以支持字符的替换,也支持字符串的替换(Cha ...
- WEB版一次选择多个文件进行批量上传(Plupload)的解决方案
WEB版一次选择多个文件进行批量上传(Plupload)的解决方案 转载自http://www.cnblogs.com/chillsrc/archive/2013/01/30/2883648.htm ...