Abstract: Paralution is an open source library for sparse iterative methods with special focus on multi-core and accelerator technology such as GPUs. It has a simple fortran interface and not well designed for multiple right-hand-sides. Here we defined a user friendly interface based on ISO_C_BINDING for Fortran FEA programmes to call Paralution solver.

keywords: Paralution, Fortran, sparse iterative method, iso_c_binding, FEA

  Paralution系由瑞典科研工作者开发的基于多种稀疏矩阵迭代求解方法的C++并行计算程序包。它支持包括OpenMP、GPU/CUDA、OpenCL、OpenMP/MIC等多种后台并行库,也允许通过MPI进行多节点并行加速计算。它是多许可证的开源软件,方便易用,且不依赖特定的硬件平台和软件库,支持主流的Linux、Windows和MacOS操作平台。具体内容可以参考其官方主页:www.paralution.com

  Paralution附带的算例中有Fortran调用的例子,只是对于有限元程序而言通常求解线性方程组AX=B的时候,右端项B不是向量形式而是矩阵形式。其次,在动力计算中总刚的稀疏结构通常而言并不发生改变,所以迭代求解器和预处理只需进行一次,这也是软件包附带算例没有考虑的。

  在有限元分析中调用Paralution计算线性稀疏方程组AX=B的一般步骤是:

1、初始化paralution环境;

2、设置求解器并导入总刚;

3、分析求解X;

4、退出并清空paralution环境

具体的介绍详见代码和算例

CPP code:

 #include <paralution.hpp>

 namespace fortran_module{
// Fortran interface via iso_c_binding
/*
Author: T.Q
Date: 2014.11
Version: 1.1
License: GPL v3
*/
extern "C"
{
// Initialize paralution
void paralution_f_init();
// Print info of paralution
void paralution_f_info();
// Build solver and preconditioner of paralution
void paralution_f_build(const int[], const int[], const double[], int ,int);
// Solve Ax=b
void paralution_f_solve(const double[], double[], int , int&, double&, int&);
// Stop paralution
void paralution_f_stop();
// Subspace method for compute general eigenpairs
//void paralution_f_subspace();
} int *row = NULL;// Row index
int *col = NULL;// Column index
int *row_offset = NULL;// Row offset index for CSR
double *val = NULL;// Value of sparse matrix double *in_x = NULL;// Internal x vector
double *in_rhs = NULL;// Internal rhs vector bool var_clear = false;// Flag of variables clearance
bool ls_build = false;// Flag of solver exist using namespace paralution; LocalMatrix<double> *mat_A = NULL;// Matrix A i.e. Stiffness matrix in FEM
LocalMatrix<double> *mat_B = NULL;// Matrix B i.e. Mass matrix in FEM // Iterative Linear Solver and Preconditioner
IterativeLinearSolver<LocalMatrix<double>, LocalVector<double>, double> *ls = NULL;
Preconditioner<LocalMatrix<double>, LocalVector<double>, double> *pr = NULL; void paralution_f_clear()
{
// Clear variables if(ls!=NULL){ ls->Clear(); delete ls;}
if(pr!=NULL){ pr->Clear(); delete pr;} if(row!=NULL)free_host(&row);
if(col!=NULL)free_host(&col);
if(row_offset!=NULL)free_host(&row_offset);
if(val!=NULL)free_host(&val); if(in_x!=NULL)free_host(&in_x);
if(in_rhs!=NULL)free_host(&in_rhs); if(mat_A!=NULL){ mat_A->Clear(); delete mat_A;}
if(mat_B!=NULL){ mat_B->Clear(); delete mat_B;} var_clear = true;
ls_build = false;
} void paralution_f_init()
{
paralution_f_clear();
init_paralution();
} void paralution_f_info()
{
info_paralution();
} void paralution_f_stop()
{
paralution_f_clear();
stop_paralution();
} void paralution_f_build(const int for_row[], const int for_col[],
const double for_val[], int n, int nnz)
{
int i; if(var_clear==false)paralution_f_clear(); // Allocate arrays
allocate_host(nnz,&row);
allocate_host(nnz,&col);
allocate_host(nnz,&val); // Copy sparse matrix data F2C
for(i=;i<nnz;i++){
row[i] = for_row[i] - ;// Fortran starts with 1 default
col[i] = for_col[i] - ;
val[i] = for_val[i];} // Load data
mat_A = new LocalMatrix<double>;
mat_A->SetDataPtrCOO(&row,&col,&val,"Imported Fortran COO Matrix", nnz, n, n);
mat_A->ConvertToCSR();// Manual suggest CSR format
mat_A->info(); // Creat Solver and Preconditioner
ls = new CG<LocalMatrix<double>, LocalVector<double>, double>;
pr = new Jacobi<LocalMatrix<double>, LocalVector<double>, double>; ls->Clear();
ls->SetOperator(*mat_A);
ls->SetPreconditioner(*pr);
ls->Build(); ls_build = true; } void paralution_f_solve(const double for_rhs[], double for_x[], int n,
int &iter, double &resnorm, int &err)
{
int i;
LocalVector<double> x;// Solution vector
LocalVector<double> rhs;// Right-hand-side vector assert(ls_build==true); if(in_rhs!=NULL)free_host(&in_rhs);
if(in_x!=NULL)free_host(&in_x); allocate_host(n,&in_rhs);
allocate_host(n,&in_x);
// Copy and set rhs vector
for(i=;i<n;i++){ in_rhs[i] = for_rhs[i];}
rhs.SetDataPtr(&in_rhs,"vector",n);
// Set solution to zero
x.Allocate("vector",n);
x.Zeros();
// Solve
ls->Solve(rhs,&x);
// Get solution
x.LeaveDataPtr(&in_x);
// Copy to array
for(i=;i<n;i++){ for_x[i] = in_x[i];}
// Clear
x.Clear();
rhs.Clear();
// Get information
iter = ls->GetIterationCount();// iteration times
resnorm = ls->GetCurrentResidual();// residual
err = ls->GetSolverStatus();// error code
}
// TODO
// Subspace method for solve general eigenpairs for symmetric real positive
// defined matrix
// A*x=lambda*M*x
// A: matrix N*N i.e. stiffness matrix
// B: matrix N*N i.e. mass matrix
//
void paralution_f_subspace(const int for_row[], const int for_col[],
const int option[], const double for_stif[], const double for_mass[],
double eigval[], double eigvec[], int n, int nnz)
{
}
}

Fortran code:

 module paralution
use,intrinsic::iso_c_binding
implicit none
!*******************************************************************************
! Fortran module for call Paralution package
!-------------------------------------------------------------------------------
! Author: T.Q.
! Date: 2014.11
! Version: 1.1
!*******************************************************************************
! License: GPL v3
!-------------------------------------------------------------------------------
! usage:
!-------------------------------------------------------------------------------
! ) call paralution_init
! ) call paralution_info (optional)
! ) call paralution_build
! ) call paralution_solve (support multi-rhs)
! ) call paralution_stop
!*******************************************************************************
interface
subroutine paralution_init()bind(c,name='paralution_f_init')
end subroutine
subroutine paralution_info()bind(c,name='paralution_f_info')
end subroutine
subroutine paralution_stop()bind(c,name='paralution_f_stop')
end subroutine
subroutine paralution_build(row,col,val,n,nnz)bind(c,name='paralution_f_build')
import
implicit none
integer(c_int),intent(in),value::n,nnz
integer(c_int),intent(in)::row(nnz),col(nnz)
real(c_double),intent(in)::val(nnz)
end subroutine
subroutine paralution_solve_vec(rhs,x,n,iter,resnorm,err2)bind(c,name='paralution_f_solve')
import
implicit none
integer(c_int),intent(in),value::n
real(c_double),intent(in)::rhs(n)
real(c_double)::x(n)
integer(c_int)::iter,err2
real(c_double)::resnorm
end subroutine
end interface
contains
subroutine paralution_solve(rhs,x,mat_rhs,mat_x,n,iter,resnorm,err2)
implicit none
integer(c_int)::n,iter,err2
real(c_double),intent(in),optional::rhs(:),mat_rhs(:,:)
real(c_double),optional::x(:),mat_x(:,:)
real(c_double)::resnorm logical::isVec,isMat
integer::i
isVec = present(rhs).and.present(x)
isMat = present(mat_rhs).and.present(mat_x) if(isVec.and.(.not.isMat))then
! rhs and x both vector
call paralution_solve_vec(rhs,x,n,iter,resnorm,err2)
elseif(isMat)then
! rhs and x both matrix
do i=,size(mat_rhs,)
call paralution_solve_vec(mat_rhs(:,i),mat_x(:,i),n,iter,resnorm,err2)
enddo
else
write(*,*)"Error too many input variables"
endif
return
end subroutine
end module program test
use paralution
implicit none
real(kind=)::a(,),b(,),x(,),val(),res2
integer::i,j,k,row(),col(),err2
a = .D0
a(,[,]) = [.7D0, .13D0]
a(,[,,]) = [.D0, .02D0, .01D0]
a(,) = .5D0
a(,) = .1D0
a(,::) = [.6D0,.D0,.16D0,.09D0,.52D0,.53D0]
a(,) = .2D0
a(,[,]) = [.3D0, .56D0]
a(,:) = [.6D0, .11D0]
a(,) = .4D0
a(,) = .1D0 write(*,*)"Data initialize"
do i=,size(a,)
do j=min(i+,size(a,)),size(a,)
a(j,i) = a(i,j)
enddo
enddo k=
do i=,size(a,)
do j=,size(a,)
if(a(i,j)>.D-)then
row(k) = i
col(k) = j
val(k) = a(i,j)
write(*,*)i,j,val(k)
k = k +
endif
enddo
enddo
b(:,) = [.287D0, .22D0, .45D0, .44D0, .486D0, .72D0, .55D0, .424D0, .621D0, .759D0]
b(:,) = .5D0*b(:,)
x = .D0 i =
j =
k =
call paralution_init()
call paralution_info()
call paralution_build(row,col,val,i,j)
do k=,
call paralution_solve(rhs=b(:,k),x=x(:,k),n=i,iter=j,resnorm=res2,err2=err2)
write(*,*)"Iter times:",j," relative error:",res2," error code:",err2
write(*,*)x(:,k)
enddo
call paralution_solve(mat_rhs=b,mat_x=x,n=i,iter=j,resnorm=res2,err2=err2)
do k=,
write(*,*)"Iter times:",j," relative error:",res2," error code:",err2
write(*,*)x(:,k)
enddo
call paralution_stop()
end program

result:

  Data initialize
1 1 1.7000000000000000
1 9 0.13000000000000000
2 2 1.0000000000000000
2 5 2.0000000000000000E-002
2 10 1.0000000000000000E-002
3 3 1.5000000000000000
4 4 1.1000000000000001
5 2 2.0000000000000000E-002
5 5 2.6000000000000001
5 7 0.16000000000000000
5 8 8.9999999999999997E-002
5 9 0.52000000000000002
5 10 0.53000000000000003
6 6 1.2000000000000000
7 5 0.16000000000000000
7 7 1.3000000000000000
7 10 0.56000000000000005
8 5 8.9999999999999997E-002
8 8 1.6000000000000001
8 9 0.11000000000000000
9 1 0.13000000000000000
9 5 0.52000000000000002
9 8 0.11000000000000000
9 9 1.3999999999999999
10 2 1.0000000000000000E-002
10 5 0.53000000000000003
10 7 0.56000000000000005
10 10 3.1000000000000001
This version of PARALUTION is released under GPL.
By downloading this package you fully agree with the GPL license.
Number of CPU cores: 2
Host thread affinity policy - thread mapping on every core
PARALUTION ver B0.8.0
PARALUTION platform is initialized
Accelerator backend: None
OpenMP threads:2
LocalMatrix name=Imported Fortran COO Matrix; rows=10; cols=10; nnz=28; prec=64bit; asm=no; format=CSR; host backend={CPU(OpenMP)}; accelerator backend={None}; current=CPU(OpenMP)
PCG solver starts, with preconditioner:
Jacobi preconditioner
IterationControl criteria: abs tol=1e-15; rel tol=1e-06; div tol=1e+08; max iter=1000000
IterationControl initial residual = 5.33043
IterationControl RELATIVE criteria has been reached: res norm=6.83208e-07; rel val=1.28171e-07; iter=6
PCG ends
Iter times: 6 relative error: 6.8320832955793363E-007 error code: 2
0.10000029331886898 0.19999984686691041 0.30000008316594051 0.40000011088792048 0.49999997425190351 0.60000016633188091 0.70000002413346363 0.79999978910736969 0.90000002416832581 1.0000000083185150
PCG solver starts, with preconditioner:
Jacobi preconditioner
IterationControl criteria: abs tol=1e-15; rel tol=1e-06; div tol=1e+08; max iter=1000000
IterationControl initial residual = 7.99564
IterationControl RELATIVE criteria has been reached: res norm=1.02481e-06; rel val=1.28171e-07; iter=6
PCG ends
Iter times: 6 relative error: 1.0248124943384603E-006 error code: 2
0.15000043997830351 0.29999977030036568 0.45000012474891066 0.60000016633188091 0.74999996137785507 0.90000024949782143 1.0500000362001956 1.1999996836610549 1.3500000362524884 1.5000000124777721
PCG solver starts, with preconditioner:
Jacobi preconditioner
IterationControl criteria: abs tol=1e-15; rel tol=1e-06; div tol=1e+08; max iter=1000000
IterationControl initial residual = 5.33043
IterationControl RELATIVE criteria has been reached: res norm=6.83208e-07; rel val=1.28171e-07; iter=6
PCG ends
PCG solver starts, with preconditioner:
Jacobi preconditioner
IterationControl criteria: abs tol=1e-15; rel tol=1e-06; div tol=1e+08; max iter=1000000
IterationControl initial residual = 7.99564
IterationControl RELATIVE criteria has been reached: res norm=1.02481e-06; rel val=1.28171e-07; iter=6
PCG ends
Iter times: 6 relative error: 1.0248124943384603E-006 error code: 2
0.10000029331886898 0.19999984686691041 0.30000008316594051 0.40000011088792048 0.49999997425190351 0.60000016633188091 0.70000002413346363 0.79999978910736969 0.90000002416832581 1.0000000083185150
Iter times: 6 relative error: 1.0248124943384603E-006 error code: 2
0.15000043997830351 0.29999977030036568 0.45000012474891066 0.60000016633188091 0.74999996137785507 0.90000024949782143 1.0500000362001956 1.1999996836610549 1.3500000362524884 1.5000000124777721

Call Paralution Solver from Fortran的更多相关文章

  1. [转载]John Burkardt搜集的FORTRAN源代码

    Over the years, I have collected, modified, adapted, adopted or created a number of software package ...

  2. 求解轨道力学二体意义下的Lambert方程(兰伯特方程)的Fortran程序

    轨道力学中二体问题下求解兰伯特方程. 老外写的Matlab程序,我把它转成了Fortran程序. !************************************************** ...

  3. Leetcode 笔记 36 - Sudoku Solver

    题目链接:Sudoku Solver | LeetCode OJ Write a program to solve a Sudoku puzzle by filling the empty cells ...

  4. py-faster-rcnn之从solver文件创建solver对象,建立pythonlayer

    faster-rcnn在训练阶段,根据一个solver的prototxt文件创建相应的网络.仅凭一个prototxt就创建网络?其实还涉及到自定义的PythonLayer. 比如lib/rpn/anc ...

  5. 【转】Caffe初试(九)solver及其设置

    solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 #caffe train --solver=*_solver. ...

  6. Fortran 基础语法(一)

    GE是大于等于号(>=),GT是大于号(>),LE是小于等于号(<=),LT是小于号(<) IF基本用法   If(逻辑判断式) then …… End if If(逻辑判断式 ...

  7. Fortran版MPI_barrier出现错误可能情况

    在Fortran中的MPI_开头函数都常有一个整数型的错误变量用以函数返回错误信息.如: call MPI_Barrier(MPI_COMM_WORLD,ierr) 在没有ierr参数时,程序可能会出 ...

  8. Pegasos: Primal Estimated sub-GrAdient Solver for SVM

    Abstract We describe and analyze a simple and effective iterative algorithm for solving the optimiza ...

  9. Caffe 源碼閱讀(五) Solver.cpp

    1.Solver类两个构造函数 Solver(const SolverParameter& param) Solver(const string& param_file) 初始化两个类 ...

随机推荐

  1. Jenkins进阶系列之——04Publish Over FTP Plugin插件

    说明:这个插件可以将构建的产物(例如:Jar)发布到FTP中去. 官方说明:Publish Over FTP Plugin 安装步骤: 系统管理→管理插件→可选插件→Artifact Uploader ...

  2. android软键盘的一些控制 转来的,格式有点乱

    "EditText + Button"  形成一个 "输入+按键响应" 的案例在android编程中是最常见不过的了. 但还有一些细节需要注意: 在EditTe ...

  3. 阿里客户端工程师试题简析——Android应用的闪退(crash)分析

    1. 问题描述 闪退(Crash)是客户端程序在运行时遭遇无法处理的异常或错误时而退出应用程序的表现,请从crash发生的原因分类与解决方法.在出现crash后如何捕捉并分析异常这两个问题给出自己的解 ...

  4. session和cookie的前后的操作

    1. // sign outexports.signout = function (req, res, next) { req.session.destroy(); res.clearCookie(c ...

  5. [AHOI2013]打地鼠(网络流)

     [问题描述]      游戏里一共会冒出来N个地鼠,这些地鼠冒出来的位置都分布在一条直线上.第i个地鼠会在Ti时刻在Xi位置冒出来,打到第i个地鼠的得分是Pi.     当游戏开始时(也就是0时刻) ...

  6. 第十章:Javascript子集和扩展

    本章讨论javascript的集和超集,其中子集的定义大部分处于安全考虑.只有使用这门语言的一个安全的子集编写脚本,才能让代码执行的更安全.更稳定.ECMScript3标准是1999年版本的,10年后 ...

  7. 每天一个linux命令(42):crontab命令

    前 一天学习了 at 命令是针对仅运行一次的任务,循环运行的例行性计划任务,linux系统则是由 cron (crond) 这个系统服务来控制的. Linux 系统上面原本就有非常多的计划性工作,因此 ...

  8. C基础--结构体

    C语言,结构体语法: 1.定义结构体类型: struct 结构体名称 { 成员类型 成员名称1; 成员类型 成员名称2; ... }; 例:struct Date { int year ; int m ...

  9. Vijos p1770 大内密探 树形DP+计数

    4天终于做出来了,没错我就是这么蒟蒻.教训还是很多的. 建议大家以后编树形DP不要用记忆化搜索,回溯转移状态个人感觉更有条理性. 大神题解传送门 by iwtwiioi 我的题解大家可以看注释&quo ...

  10. Mysql-提示java.sql.SQLException: Cannot convert value '0000-00-00 00:00:00' from column 7 to TIMESTAMP.

    在Mysql数据库中使用DATETIME类型来存储时间,使用JDBC中读取这个字段的时候,应该使用 ResultSet.getTimestamp(),这样会得到一个java.sql.Timestamp ...