A - Airport Express

Time Limit:1000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu

Appoint description: System Crawler  (2014-03-01)

Description

Problem D: Airport Express

In a small city called Iokh, a train service, Airport-Express, takes residents to the airport more quickly than other transports. There are two types of trains in Airport-Express, the Economy-Xpress and theCommercial-Xpress. They travel at different speeds, take different routes and have different costs.

Jason is going to the airport to meet his friend. He wants to take the Commercial-Xpress which is supposed to be faster, but he doesn't have enough money. Luckily he has a ticket for the Commercial-Xpress which can take him one station forward. If he used the ticket wisely, he might end up saving a lot of time. However, choosing the best time to use the ticket is not easy for him.

Jason now seeks your help. The routes of the two types of trains are given. Please write a program to find the best route to the destination. The program should also tell when the ticket should be used.

Input

The input consists of several test cases. Consecutive cases are separated by a blank line.

The first line of each case contains 3 integers, namely N, S and E (2 ≤ N ≤ 500, 1 ≤ S, EN), which represent the number of stations, the starting point and where the airport is located respectively.

There is an integer M (1 ≤ M ≤ 1000) representing the number of connections between the stations of the Economy-Xpress. The next Mlines give the information of the routes of the Economy-Xpress. Each consists of three integers X, Y and Z (X, YN, 1 ≤ Z ≤ 100). This means X and Y are connected and it takes Z minutes to travel between these two stations.

The next line is another integer K (1 ≤ K ≤ 1000) representing the number of connections between the stations of the Commercial-Xpress. The next K lines contain the information of the Commercial-Xpress in the same format as that of the Economy-Xpress.

All connections are bi-directional. You may assume that there is exactly one optimal route to the airport. There might be cases where you MUST use your ticket in order to reach the airport.

Output

For each case, you should first list the number of stations which Jason would visit in order. On the next line, output "Ticket Not Used" if you decided NOT to use the ticket; otherwise, state the station where Jason should get on the train of Commercial-Xpress. Finally, print the total time for the journey on the last line. Consecutive sets of output must be separated by a blank line.

Sample Input

4 1 4
4
1 2 2
1 3 3
2 4 4
3 4 5
1
2 4 3

Sample Output

1 2 4
2
5

::刚开始还以为这道题路是单向的,wa了很多次。这道题枚举商业线的做法挺经典,跟判断某条线路是否在最短路上很类似(分别以起点st和终点en跑两次最短路,得dis,dis2,当dis[u]+w(u,v)+dis2[v]=dis[en],可以判断w(u,v)在最短路上),这道题我是用spfa算法做的

代码:

   1: #include <iostream>

   2: #include <cstdio>

   3: #include <cstring>

   4: #include <algorithm>

   5: #include <queue>

   6: #include <stack>

   7: using namespace std;

   8: typedef long long ll;

   9: const int INF=1e9+7;

  10: const int N=505;

  11: bool vis[N];

  12: int head[N];

  13: int dis[N],dis2[N],pre[N],pre2[N];

  14: int n,m,k,st,en,cnt=0;

  15:  

  16: struct edge

  17: {

  18:     int u,v,w,p;

  19:     edge() {}

  20:     edge(int a,int b,int c,int d):u(a),v(b),w(c),p(d) {}

  21: }e[N<<4];

  22:  

  23: void spfa(edge e[],int head[],int dis[],int st,int pre[])

  24: {

  25:     memset(vis,0,sizeof(vis));

  26:     for(int i=1; i<=n; i++) dis[i]=INF;

  27:     queue<int >q;

  28:     dis[st]=0;

  29:     q.push(st);

  30:     while(!q.empty())

  31:     {

  32:         int u=q.front();q.pop();

  33:         vis[u]=0;

  34:         for(int i=head[u]; ~i; i=e[i].p)

  35:         {

  36:             int v=e[i].v;

  37:             if(dis[u]+e[i].w<dis[v])

  38:             {

  39:                 dis[v]=dis[u]+e[i].w;

  40:                 pre[v]=u;

  41:                 if(!vis[v])

  42:                 {

  43:                     q.push(v);

  44:                     vis[v]=1;

  45:                 }

  46:             }

  47:         }

  48:     }

  49: }

  50:  

  51: void printa(int x)

  52: {

  53:     if(x==st)

  54:     {

  55:         printf("%d",x);

  56:         return;

  57:     }

  58:     printa(pre[x]);

  59:     printf(" %d",x);

  60: }

  61:  

  62: void printb(int x)

  63: {

  64:     printf(" %d",x);

  65:     if(x==en) return ;

  66:     printb(pre2[x]);

  67: }

  68:  

  69: int main()

  70: {

  71: //    freopen("in.txt","r",stdin);

  72:     int flag=0;

  73:     while(scanf("%d%d%d",&n,&st,&en)>0)

  74:     {

  75:         if(flag) printf("\n");

  76:         memset(head,-1,sizeof(head));

  77:         memset(pre,-1,sizeof(pre));

  78:         memset(pre2,-1,sizeof(pre2));

  79:         scanf("%d",&m);

  80:         cnt=0;

  81:         for(int i=0; i<m; i++)

  82:         {

  83:             int u,v,w;

  84:             scanf("%d%d%d",&u,&v,&w);

  85:             e[cnt]=edge(u,v,w,head[u]);

  86:             head[u]=cnt++;

  87:             e[cnt]=edge(v,u,w,head[v]);

  88:             head[v]=cnt++;

  89:         }

  90:         spfa(e,head,dis,st,pre);

  91:         spfa(e,head,dis2,en,pre2);

  92: //        for(int i=1; i<=n ; i++) printf("%ddis=%d\n",i,dis[i]);

  93: //        for(int i=1; i<=n ; i++) printf("%ddis2=%d\n",i,dis2[i]);

  94:  

  95:         scanf("%d",&k);

  96:         int a=0,b=0,L=dis[en];

  97:         for(int i=0; i<k; i++)

  98:         {

  99:             int u,v,w;

 100:             scanf("%d%d%d",&u,&v,&w);

 101:             if(dis[u]+dis2[v]+w<L)

 102:             {

 103:                 a=u,b=v,L=dis[u]+dis2[v]+w;

 104:             }

 105:             if(dis[v]+dis2[u]+w<L)

 106:             {

 107:                 a=v,b=u,L=dis[v]+dis2[u]+w;

 108:             }

 109:         }

 110:         if(a==0)

 111:         {

 112:             printa(en);

 113:             printf("\nTicket Not Used\n");

 114:         }

 115:         else

 116:         {

 117:             printa(a);

 118:             printb(b);

 119:             printf("\n%d\n",a);

 120:         }

 121:         printf("%d\n",L);

 122:         flag=1;

 123:     }

 124:     return 0;

 125: }

一下是一些测试数据:

/*

7 1 3
9

1 2 1

2 3 100

1 4 20

1 5 10

5 4 10

5 6 10

6 4 20

4 7 30

3 7 10

0

(

1 4 7 3

Ticket Not Used

60

)

7 1 3

9

1 2 1

2 3 100

1 4 20

1 5 10

5 4 10

5 6 10

6 4 20

4 7 30

3 7 10

1

5 4 1

(

1 5 4 7 3

5

51

)

*/

/*

3 1 3

1

2 3 2

1

1 2 1

3 1 3

2

1 2 8

2

1 2 1

2 3 2

4 1 4

2

1 2 8

3 4 1000

2

1 2 1

2 3 2

3 1 3

2

1 2 5

2 3 8

2

1 2 1

2 3 2

4 1 4

4

1 2 2

1 3 3

2 4 4

3 4 5

1

2 4 3

4 1 4

4

1 2 2

1 3 3

2 4 4

3 4 5

1

2 4 30

*/

Uva-11374-Airport Express的更多相关文章

  1. UVA - 11374 - Airport Express(堆优化Dijkstra)

    Problem    UVA - 11374 - Airport Express Time Limit: 1000 mSec Problem Description In a small city c ...

  2. UVA 11374 Airport Express SPFA||dijkstra

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  3. UVA - 11374 Airport Express (Dijkstra模板+枚举)

    Description Problem D: Airport Express In a small city called Iokh, a train service, Airport-Express ...

  4. UVA 11374 Airport Express(最短路)

    最短路. 把题目抽象一下:已知一张图,边上的权值表示长度.现在又有一些边,只能从其中选一条加入原图,使起点->终点的距离最小. 当加上一条边a->b,如果这条边更新了最短路,那么起点st- ...

  5. UVA 11374 Airport Express 机场快线(单源最短路,dijkstra,变形)

    题意: 给一幅图,要从s点要到e点,图中有两种无向边分别在两个集合中,第一个集合是可以无限次使用的,第二个集合中的边只能挑1条.问如何使距离最短?输出路径,用了第二个集合中的哪条边,最短距离. 思路: ...

  6. UVA 11374 Airport Express(枚举+最短路)

    枚举每条商业线<a, b>,设d[i]为起始点到每点的最短路,g[i]为终点到每点的最短路,ans便是min{d[a] + t[a, b] + g[b]}.注意下判断是否需要经过商业线.输 ...

  7. UVa 11374 - Airport Express ( dijkstra预处理 )

    起点和终点各做一次单源最短路, d1[i], d2[i]分别代表起点到i点的最短路和终点到i点的最短路,枚举商业线车票cost(a, b);  ans = min( d1[a] + cost(a, b ...

  8. UVA 11374 Airport Express (最短路)

    题目只有一条路径会发生改变. 常见的思路,预处理出S和T的两个单源最短路,然后枚举商业线,商业线两端一定是选择到s和t的最短路. 路径输出可以在求最短路的同时保存pa数组得到一棵最短路树,也可以用di ...

  9. uva 11374 最短路+记录路径 dijkstra最短路模板

    UVA - 11374 Airport Express Time Limit:1000MS   Memory Limit:Unknown   64bit IO Format:%lld & %l ...

  10. 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板)

    layout: post title: 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板) author: "luowentaoaa" catalo ...

随机推荐

  1. WebApi中跨域解决办法

    在做Web开发中,常常会遇到跨域的问题,到目前为止,已经有非常多的跨域解决方案.由于时间有限,本文不会深入. 笔者遇到的问题是Js调用WebAPI中的数据进行跨域的场景.涉及若干跨域方案: 方案1:j ...

  2. oracle触发器类型

    http://www.cnblogs.com/roucheng/p/3506033.html 触发器是许多关系数据库系统都提供的一项技术.在ORACLE系统里,触发器类似过程和函数,都有声明,执行和异 ...

  3. Netty学习之服务器端创建

    一.服务器端开发时序图 图片来源:Netty权威指南(第2版) 二.Netty服务器端开发步骤 使用Netty进行服务器端开发主要有以下几个步骤: 1.创建ServerBootstrap实例 Serv ...

  4. Python入门笔记(15):对文件的操作(1)

    一.文件对象 我理解的文件对象就是一个接口,通过这个接口对文件进行相关操作. <Python 核心编程>上说的很晦涩,这里没有深刻理解到,希望有人能解释给我听. >>> ...

  5. Java开发中的23种设计模式(转)

    设计模式(Design Patterns) ——可复用面向对象软件的基础 设计模式(Design pattern)是一套被反复使用.多数人知晓的.经过分类编目的.代码设计经验的总结.使用设计模式是为了 ...

  6. asp.net控件的Hyperlink控件

    Asp.net控件: Hyperlink控件:Hyperlink控件又称为超链接控件,该控件在功能上跟Html的<a herf=””>控件相似,其显示的模式为超链接的形式. 注意: Hyp ...

  7. 浅谈ImageList

    ImageList组件用了很久,但是一直不太清楚它的实现原理,今天专门特意花了时间倒腾了下,终于弄明白了!于是在这里和大家分享下! 在设计页面中打卡工具箱-组件 找到ImageList组件,将它直接拖 ...

  8. 一些java的书籍

    netty in action 中文版:http://pan.baidu.com/s/1pLnEKZL spring security-3.0.1:http://pan.baidu.com/s/1bp ...

  9. windows远程控制

    windows+r  输入 mstsc 打开远程控制 首先,确定目标机器支持远程控制 问题解决: Win7远程桌面提示您的凭据不工作: http://jingyan.baidu.com/article ...

  10. JavaMail入门第二篇 创建邮件

    JavaMail API使用javax.mail.Message类来表示一封邮件,Message类是一个抽象类,所以我们需要使用其子类javax.mail.internet.MimeMessage类来 ...