囧啊囧。

lca的求法太多了

倍增,tarjan,st,lct,hld....

后边三个我就不写了,其中st我没写过,估计用不上,在线用倍增,离线用tarjan就行了。

嗯。

第一种,倍增(O(nlogn)~O(logn),在线):

倍增的思想用在树上,即可以求出lca。

我们维护二维数组,f[i][j],表示i号点的第2^j号祖先,显然2^0=1也就是f[i][0]就是他的父亲

我们需要用dfs维护一个深度数组(求lca需要用)

还需要倍增求出所有的f[i][j],学过st的都应该知道,在这里f[i][j]=f[ f[i][j-1] ][j]

然后是我们的求lca了,很简单,首先要将这两个点u和v调到同一深度,这样以后操作都是同深度的。

怎么调深度呢?很简单,将他们的深度相减,我们设为dep,那么这个dep的就对应了深一点的那个点需要上升的高度,恩,应该马上能想到,直接用二进制表示深度然后一直爬上去就行了,这就是倍增的思想,log级别

同一深度时,我们要同时上升啦~我们继续用倍增思想,依次上升2^k的高度。什么时候上升呢?当然是f[u][k]!=f[v][k]的时候,因为这说明他们的祖先还不同,他们位于2棵子树,所以要上升。并且顺序要从大到小!否则求不到最小的祖先,很容易理解的。

代码很简单,12行

#include <iostream>
#include <cstdio>
using namespace std;
#define dbg(x) cout << #x << " = " << x << endl
#define read(x) x=getint()
#define rdm(u) for(int i=ihead[u]; i; i=e[i].next) const int N=10000, M=15;
inline const int getint() { char c=getchar(); int k=1, ret=0; for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) ret=ret*10+c-'0'; return k*ret; }
struct ed { int to, next; } e[N<<1];
int cnt, ihead[N], n, m, dep[N], fa[N][M];
bool vis[N];
inline void add(const int &u, const int &v) {
e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v;
e[++cnt].next=ihead[v]; ihead[v]=cnt; e[cnt].to=u;
}
void dfs(const int &u, const int &d) {
vis[u]=1; dep[u]=d;
rdm(u) if(!vis[e[i].to]) { dfs(e[i].to, d+1); fa[e[i].to][0]=u; }
}
inline void bz() { for(int j=1; j<M; ++j) for(int i=1; i<=n; ++i) fa[i][j]=fa[fa[i][j-1]][j-1]; }
inline int lca(int u, int v) {
if(dep[u]<dep[v]) swap(u, v);
int d=dep[u]-dep[v];
for(int i=M-1; i>=0; --i) if((1<<i)&d) u=fa[u][i];
if(u==v) return u;
for(int i=M-1; i>=0; --i) if(fa[u][i]!=fa[v][i]) u=fa[u][i], v=fa[v][i];
return fa[u][0];
}
int main() {
read(n); read(m);
for(int i=1; i<n; ++i) add(getint(), getint());
dfs(1, 1); bz();
while(m--) printf("%d\n", lca(getint(), getint()));
return 0;
}

第二种,tarjan(O(n+并查集)~O(1) ,离线):

速度略优于第一种。

tarjan求lca也很好理解的,我们假设现在的点为x

那么它子树作为一个已经被访问完的集合,并且在这些集合内的lca已经全部求出。

那么我们只要将这些子树和他子集合并就行了。

在这个集合求lca的方法很简单,用并查集即可。

代码也很短,也大概12行吧

#include <iostream>
#include <cstdio>
#include <vector>
using namespace std;
#define dbg(x) cout << #x << " = " << x << endl
#define read(x) x=getint()
#define rdm(u) for(int i=ihead[u]; i; i=e[i].next) const int N=10005, M=10005;
inline const int getint() { char c=getchar(); int k=1, ret=0; for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) ret=ret*10+c-'0'; return k*ret; }
struct ed { int to, next; } e[N<<1];
int cnt, ihead[N], n, m, lca[M], fa[N], p[N];
bool vis[N];
vector<pair<int, int> > q[N];
inline void add(const int &u, const int &v) {
e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v;
e[++cnt].next=ihead[v]; ihead[v]=cnt; e[cnt].to=u;
}
int ifind(const int &x) { return x==p[x]?x:p[x]=ifind(p[x]); }
void tarjan(int u) {
p[u]=u;
rdm(u) if(e[i].to!=fa[u]) {
fa[e[i].to]=u; tarjan(e[i].to); p[e[i].to]=u;
}
vis[u]=1;
int t=q[u].size();
for(int i=0; i<t; ++i) if(vis[q[u][i].first]) lca[q[u][i].second]=ifind(q[u][i].first);
}
int main() {
read(n); read(m);
for(int i=1; i<n; ++i) add(getint(), getint());
int u, v;
for(int i=1; i<=m; ++i) {
read(u); read(v);
q[v].push_back(pair<int, int> (u, i));
q[u].push_back(pair<int, int> (v, i));
}
tarjan(1);
for(int i=1; i<=m; ++i) printf("%d\n", lca[i]);
return 0;
}

最近公共祖先(lca)的更多相关文章

  1. Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集)

    Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集) Description sideman做好了回到Gliese 星球的硬件准备,但是sideman的导航系统还没有完全设计好.为 ...

  2. POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)

    POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...

  3. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  4. [模板] 最近公共祖先/lca

    简介 最近公共祖先 \(lca(a,b)\) 指的是a到根的路径和b到n的路径的深度最大的公共点. 定理. 以 \(r\) 为根的树上的路径 \((a,b) = (r,a) + (r,b) - 2 * ...

  5. 【lhyaaa】最近公共祖先LCA——倍增!!!

    高级的算法——倍增!!! 根据LCA的定义,我们可以知道假如有两个节点x和y,则LCA(x,y)是 x 到根的路 径与 y 到根的路径的交汇点,同时也是 x 和 y 之间所有路径中深度最小的节 点,所 ...

  6. POJ 1470 Closest Common Ancestors (最近公共祖先LCA 的离线算法Tarjan)

    Tarjan算法的详细介绍,请戳: http://www.cnblogs.com/chenxiwenruo/p/3529533.html #include <iostream> #incl ...

  7. 【Leetcode】查找二叉树中任意结点的最近公共祖先(LCA问题)

    寻找最近公共祖先,示例如下: 1 /           \ 2           3 /    \        /    \ 4    5      6    7 /    \          ...

  8. 最近公共祖先LCA(Tarjan算法)的思考和算法实现

    LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现 小广告:METO CODE 安溪一中信息学在线评测系统(OJ) //由于这是第一篇博客..有点瑕疵...比如我把false写成了f ...

  9. 查找最近公共祖先(LCA)

    一.问题 求有根树的任意两个节点的最近公共祖先(一般来说都是指二叉树).最近公共祖先简称LCA(Lowest Common Ancestor).例如,如下图一棵普通的二叉树. 结点3和结点4的最近公共 ...

  10. 最近公共祖先(LCA)的三种求解方法

    转载来自:https://blog.andrewei.info/2015/10/08/e6-9c-80-e8-bf-91-e5-85-ac-e5-85-b1-e7-a5-96-e5-85-88lca- ...

随机推荐

  1. 每天一个命令day1【diff 命令】(具体实例看下一节)

    diff 命令是 linux上非常重要的工具,用于比较文件的内容,特别是比较两个版本不同的文件以找到改动的地方.diff在命令行中打印每一个行的改动.最新版本的diff还支持二进制文件.diff程序的 ...

  2. Balanced Binary Tree

    Given a binary tree, determine if it is height-balanced. For this problem, a height-balanced binary ...

  3. C++复数四则运算的实现

    程序主要实现复数的加减乘,数乘,取共轭功能. 将所有函数都定义为了成员函数. 使用库函数atof将字符串转换为浮点型数据. 函数主要难点在于处理输入.由于需要判断输入是选择退出还是继续,所以用字符串来 ...

  4. 【转】基于注解的SpirngMVC简单介绍

    转载地址:http://haohaoxuexi.iteye.com/blog/1343761 SpringMVC是一个基于DispatcherServlet的MVC框架,每一个请求最先访问的都是 Di ...

  5. MST:Roadblocks(POJ 3255)

       路上的石头 题目大意:某个街区有R条路,N个路口,道路双向,问你从开始(1)到N路口的次短路经长度,同一条边可以经过多次. 这一题相当有意思,现在不是要你找最短路径,而是要你找次短路经,而且次短 ...

  6. BP神经网络模型与学习算法

    一,什么是BP "BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最 ...

  7. Java之IO操作总结

    所谓IO,也就是Input与Output的缩写.在java中,IO涉及的范围比较大,这里主要讨论针对文件内容的读写 其他知识点将放置后续章节 对于文件内容的操作主要分为两大类 分别是: 字符流 字节流 ...

  8. Linux Top

    http://www.it165.net/os/html/201402/7262.html

  9. 《JavaScript高级程序设计》学习笔记

    系统学习JS, 从<JavaScript高级程序设计>入门,通过学习jQuery或者angularJS源码来进阶. 第1章 JavaScript简介 1.JS问世的目的是处理以前由服务器端 ...

  10. php文件上传类

    <?php header("Content-Type:text/html; charset=utf-8"); if($_POST['submit']){ $upfiles = ...