SPOJ COT2 Count on a tree II(树上莫队)
题目链接:http://www.spoj.com/problems/COT2/
You are given a tree with N nodes.The tree nodes are numbered from 1 to N.Each node has an integer weight.
We will ask you to perfrom the following operation:
- u v : ask for how many different integers that represent the weight of nodes there are on the path from u to v.
Input
In the first line there are two integers N and M.(N<=40000,M<=100000)
In the second line there are N integers.The ith integer denotes the weight of the ith node.
In the next N-1 lines,each line contains two integers u v,which describes an edge (u,v).
In the next M lines,each line contains two integers u v,which means an operation asking for how many different integers that represent the weight of nodes there are on the path from u to v.
Output
For each operation,print its result.
题目大意:给一棵树,每个点有一个权值。多次询问路径(a, b)上有多少个权值不同的点。
思路:参考VFK WC 2013 糖果公园 park 题解(此题比COT2要难。)
http://vfleaking.blog.163.com/blog/static/174807634201311011201627/
代码(2.37S):
#include <bits/stdc++.h>
using namespace std; const int MAXV = ;
const int MAXE = MAXV << ;
const int MAXQ = ;
const int MLOG = ; namespace Bilibili { int head[MAXV], val[MAXV], ecnt;
int to[MAXE], next[MAXE];
int n, m; int stk[MAXV], top;
int block[MAXV], bcnt, bsize; struct Query {
int u, v, id;
void read(int i) {
id = i;
scanf("%d%d", &u, &v);
}
void adjust() {
if(block[u] > block[v]) swap(u, v);
}
bool operator < (const Query &rhs) const {
if(block[u] != block[rhs.u]) return block[u] < block[rhs.u];
return block[v] < block[rhs.v];
}
} ask[MAXQ];
int ans[MAXQ];
/// Graph
void init() {
memset(head + , -, n * sizeof(int));
ecnt = ;
} void add_edge(int u, int v) {
to[ecnt] = v; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; next[ecnt] = head[v]; head[v] = ecnt++;
} void gethash(int a[], int n) {
static int tmp[MAXV];
int cnt = ;
for(int i = ; i <= n; ++i) tmp[cnt++] = a[i];
sort(tmp, tmp + cnt);
cnt = unique(tmp, tmp + cnt) - tmp;
for(int i = ; i <= n; ++i)
a[i] = lower_bound(tmp, tmp + cnt, a[i]) - tmp + ;
} void read() {
scanf("%d%d", &n, &m);
for(int i = ; i <= n; ++i) scanf("%d", &val[i]);
gethash(val, n);
init();
for(int i = , u, v; i < n; ++i) {
scanf("%d%d", &u, &v);
add_edge(u, v);
}
for(int i = ; i < m; ++i) ask[i].read(i);
}
/// find_block
void add_block(int &cnt) {
while(cnt--) block[stk[--top]] = bcnt;
bcnt++;
cnt = ;
} void rest_block() {
while(top) block[stk[--top]] = bcnt - ;
} int dfs_block(int u, int f) {
int size = ;
for(int p = head[u]; ~p; p = next[p]) {
int v = to[p];
if(v == f) continue;
size += dfs_block(v, u);
if(size >= bsize) add_block(size);
}
stk[top++] = u;
size++;
if(size >= bsize) add_block(size);
return size;
} void init_block() {
bsize = max(, (int)sqrt(n));
dfs_block(, );
rest_block();
}
/// ask_rmq
int fa[MLOG][MAXV];
int dep[MAXV]; void dfs_lca(int u, int f, int depth) {
dep[u] = depth;
fa[][u] = f;
for(int p = head[u]; ~p; p = next[p]) {
int v = to[p];
if(v != f) dfs_lca(v, u, depth + );
}
} void init_lca() {
dfs_lca(, -, );
for(int k = ; k + < MLOG; ++k) {
for(int u = ; u <= n; ++u) {
if(fa[k][u] == -) fa[k + ][u] = -;
else fa[k + ][u] = fa[k][fa[k][u]];
}
}
} int ask_lca(int u, int v) {
if(dep[u] < dep[v]) swap(u, v);
for(int k = ; k < MLOG; ++k) {
if((dep[u] - dep[v]) & ( << k)) u = fa[k][u];
}
if(u == v) return u;
for(int k = MLOG - ; k >= ; --k) {
if(fa[k][u] != fa[k][v])
u = fa[k][u], v = fa[k][v];
}
return fa[][u];
}
/// modui
bool vis[MAXV];
int diff, cnt[MAXV]; void xorNode(int u) {
if(vis[u]) vis[u] = false, diff -= (--cnt[val[u]] == );
else vis[u] = true, diff += (++cnt[val[u]] == );
} void xorPathWithoutLca(int u, int v) {
if(dep[u] < dep[v]) swap(u, v);
while(dep[u] != dep[v])
xorNode(u), u = fa[][u];
while(u != v)
xorNode(u), u = fa[][u],
xorNode(v), v = fa[][v];
} void moveNode(int u, int v, int taru, int tarv) {
xorPathWithoutLca(u, taru);
xorPathWithoutLca(v, tarv);
//printf("debug %d %d\n", ask_lca(u, v), ask_lca(taru, tarv));
xorNode(ask_lca(u, v));
xorNode(ask_lca(taru, tarv));
} void make_ans() {
for(int i = ; i < m; ++i) ask[i].adjust();
sort(ask, ask + m);
int nowu = , nowv = ; xorNode();
for(int i = ; i < m; ++i) {
moveNode(nowu, nowv, ask[i].u, ask[i].v);
ans[ask[i].id] = diff;
nowu = ask[i].u, nowv = ask[i].v;
}
} void print_ans() {
for(int i = ; i < m; ++i)
printf("%d\n", ans[i]);
} void solve() {
read();
init_block();
init_lca();
make_ans();
print_ans();
} }; int main() {
Bilibili::solve();
}
SPOJ COT2 Count on a tree II(树上莫队)的更多相关文章
- spoj COT2 - Count on a tree II 树上莫队
题目链接 http://codeforces.com/blog/entry/43230树上莫队从这里学的, 受益匪浅.. #include <iostream> #include < ...
- SPOJ COT2 Count on a tree II 树上莫队算法
题意: 给出一棵\(n(n \leq 4 \times 10^4)\)个节点的树,每个节点上有个权值,和\(m(m \leq 10^5)\)个询问. 每次询问路径\(u \to v\)上有多少个权值不 ...
- SP10707 COT2 - Count on a tree II (树上莫队)
大概学了下树上莫队, 其实就是在欧拉序上跑莫队, 特判lca即可. #include <iostream> #include <algorithm> #include < ...
- SP10707 COT2 - Count on a tree II [树上莫队学习笔记]
树上莫队就是把莫队搬到树上-利用欧拉序乱搞.. 子树自然是普通莫队轻松解决了 链上的话 只能用树上莫队了吧.. 考虑多种情况 [X=LCA(X,Y)] [Y=LCA(X,Y)] else void d ...
- [SPOJ]Count on a tree II(树上莫队)
树上莫队模板题. 使用欧拉序将树上路径转化为普通区间. 之后莫队维护即可.不要忘记特判LCA #include<iostream> #include<cstdio> #incl ...
- SPOJ COT2 - Count on a tree II(LCA+离散化+树上莫队)
COT2 - Count on a tree II #tree You are given a tree with N nodes. The tree nodes are numbered from ...
- spoj COT2 - Count on a tree II
COT2 - Count on a tree II http://www.spoj.com/problems/COT2/ #tree You are given a tree with N nodes ...
- SPOJ COT2 Count on a tree II (树上莫队,倍增算法求LCA)
题意:给一个树图,每个点的点权(比如颜色编号),m个询问,每个询问是一个区间[a,b],图中两点之间唯一路径上有多少个不同点权(即多少种颜色).n<40000,m<100000. 思路:无 ...
- SPOJ COT2 Count on a tree II (树上莫队)
题目链接:http://www.spoj.com/problems/COT2/ 参考博客:http://www.cnblogs.com/xcw0754/p/4763804.html上面这个人推导部分写 ...
随机推荐
- Android高级之Dalvik初识
本文来自http://blog.csdn.net/liuxian13183/ ,引用必须注明出处! 研究安卓已多年,一直在应用层做开发,Framework层只是看过,也就是大家常说的"底层& ...
- Delphi FindowWindow,FindowWindowEx
unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms ...
- CSS优先级别计算
a.b.c.d,可以以这四种等级为依据确定CSS选择器的优先级: a-----style 行内样式 个数 +1000 b-----id 个数+100 c-----类 个数+10 d-----类型个数 ...
- SQl中Left Join 、Right Join 、Inner Join与Ful Join
1 left join 左外连接:查询结果以左表数据为准.假如左表有四条数据,右表有三条数据,则查询结果为四条,且都是左表中有的数据. 例如: EMP表: SAL表: 左连接 左连接,表EMP是主表, ...
- 创建数据库和表的SQL语句
创建数据库的SQL语句: 1 create database stuDB 2 on primary -- 默认就属于primary文件组,可省略 3 ( 4 /*--数据文件的具体描述--*/ 5 n ...
- C# 3.0 LINQ的准备工作
局部变量 隐式类型允许你用var修饰类型.用var修饰只是编译器方便我们进行编码,类型本身仍然是强类型的,所以当编译器无法推断出类型时(例如你初始化一个变量却没有为其赋值,或赋予null,此时就无法推 ...
- jQuery对象与DOM对象之间的转换(转)
什么是jQuery对象? —就是通过jQuery包装DOM对象后产生的对象.jQuery对象是jQuery独有的,其可以使用jQuery里的方法. 比如: $(“#test”).html() 意思 ...
- 1.Oracle数据库概述
Oracle数据库概述 1.1Oracle结构图 1.1如何访问数据库 a.本机直接通过sock(套接字)方式访问 IPC UDP协议 ,不需要网络 b.通过tcp建立连接到oracle服务器 1. ...
- Request.url请求路径的一些属性
Request.url请求路径的一些属性1,Request.UrlReferrer.AbsolutePath=获取URL的绝对路径例:"/Manager/Module/OfficialMan ...
- RFS_窗口或区域之间的切换
1. 测试用例描述 [前置条件]: 1. 已经登录系统 [测试步骤]: 1. 验证登录成功 2. 选择[用户管理]菜单 3. 打开[新增用户]页面 4. 输入必填字段,点击[Submit]按钮 [预 ...