分治+并查集。假设要求[L,mid]的答案,那么很明显,如果一条边的两个端点都>mid的话或者一个端点>mid一个端点<L,说明询问[L,mid]这个区间中任何一点时候,这一条边都是连接的,否则的话递归下去处理。[mid+1,R]同理。

一个图不是二分图的话说明存在奇环,奇环可以用并查集处理。这里的并查集不使用路径压缩而使用按轶合并。并查集的还原操作可以用一个栈记录每次合并时的具体操作,然后按序还原即可。

  代码

 #include<cstdio>
#include<vector>
#define N 300010
using namespace std;
int f[N],d[N];
int n,m,i,dp;
int tt[N],pre[N],p[N],ans[N],flag[N];
int tot,stack[N],a[N],b[N],g[N];
vector<int> vec[N];
void link(int x,int y)
{
dp++;pre[dp]=p[x];p[x]=dp;tt[dp]=y;
}
int getfa(int x,int& y)
{
y=;
while (x!=f[x])
{
y^=g[x];
x=f[x];
}
return x;
}
void Union(int x,int y,int &z)
{
int disx,disy;
x=getfa(x,disx);
y=getfa(y,disy);
if (x!=y)
{
if (d[x]>d[y]) x^=y^=x^=y;
f[x]=y;
g[x]=(disx^disy^);
tot++;stack[tot]=x;
if (d[x]==d[y])
{
flag[tot]=;
d[y]++;
}
else
flag[tot]=;
}
else
{
if (disx^disy^)
z|=;
}
}
void recover(int x)
{
while (tot>x)
{
if (flag[tot])
d[f[stack[tot]]]--;
f[stack[tot]]=stack[tot];
g[stack[tot]]=;
tot--;
}
}
void solve(int x,int l,int r,int q)
{
int i,tmp,len,t,Ans;
if (l==r)
{
ans[l]=-q;
return;
}
int mid=(l+r)>>; vec[*x].clear();
vec[*x+].clear();
tmp=tot;
Ans=q;
len=vec[x].size();
for (i=;i<len;i++)
{
t=vec[x][i];
if ((a[t]>mid)||((a[t]<l)&&(b[t]>mid)))
Union(a[t],b[t],Ans);
else
vec[*x].push_back(t);
}
solve(*x,l,mid,Ans); Ans=q;
recover(tmp);
for (i=;i<len;i++)
{
t=vec[x][i];
if ((b[t]<mid+)||((a[t]<mid+)&&(b[t]>r)))
Union(a[t],b[t],Ans);
else
vec[*x+].push_back(t);
}
solve(*x+,mid+,r,Ans);
}
int main()
{
int tt;
scanf("%d",&tt);
while (tt)
{
tt--;
scanf("%d%d",&n,&m);
for (i=;i<=n;i++)
{
g[i]=;
f[i]=i;
}
tot=;
vec[].clear();
for (i=;i<=m;i++)
{
scanf("%d%d",&a[i],&b[i]);
if (a[i]>b[i])
a[i]^=b[i]^=a[i]^=b[i];
vec[].push_back(i);
}
solve(,,n,);
for (i=;i<=n;i++)
printf("%d",ans[i]);
printf("\n");
}
}

hdu5354 Bipartite Graph的更多相关文章

  1. [HDU5354]Bipartite Graph(CDQ分治+并查集)

    经典动态二分图问题. 考虑solve(l,r)分治成l,mid和mid+1,r.先将区间[mid+1,r]中的点全部加入图中,若此时存在奇环则ans[l..mid]全部为0,否则递归到左边. 递归完左 ...

  2. 二分图点染色 BestCoder 1st Anniversary($) 1004 Bipartite Graph

    题目传送门 /* 二分图点染色:这题就是将点分成两个集合就可以了,点染色用dfs做, 剩下的点放到点少的集合里去 官方解答:首先二分图可以分成两类点X和Y, 完全二分图的边数就是|X|*|Y|.我们的 ...

  3. hdu 5313 Bipartite Graph(dfs染色 或者 并查集)

    Problem Description Soda has a bipartite graph with n vertices and m undirected edges. Now he wants ...

  4. Learning Query and Document Similarities from Click-through Bipartite Graph with Metadata

    读了一篇paper,MSRA的Wei Wu的一篇<Learning Query and Document Similarities from Click-through Bipartite Gr ...

  5. HDU 5313——Bipartite Graph——————【二分图+dp+bitset优化】

    Bipartite Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  6. CodeForces - 600F Edge coloring of bipartite graph

    Discription You are given an undirected bipartite graph without multiple edges. You should paint the ...

  7. HDU 5313 Bipartite Graph(二分图染色+01背包水过)

    Problem Description Soda has a bipartite graph with n vertices and m undirected edges. Now he wants ...

  8. HDU 5313 Bipartite Graph (二分图着色,dp)

    题意: Soda有一个n个点m条边的二分图, 他想要通过加边使得这张图变成一个边数最多的完全二分图. 于是他想要知道他最多能够新加多少条边. 注意重边是不允许的. 思路: 先将二分图着色,将每个连通分 ...

  9. HDU 5313 Bipartite Graph

    题意:给一个二分图,问想让二分图变成完全二分图最多能加多少条边. 解法:图染色+dp+bitset优化.设最终的完全二分图两部分点集为A和B,A中点个数为x,B中点个数为y,边数则为x × y,答案即 ...

随机推荐

  1. ASP.NET WebForm与ASP.NET MVC的不同点

    ASP.NET WebForm ASP.NET MVC ASP.NET Web Form 遵循传统的事件驱动开发模型 ASP.NET MVC是轻量级的遵循MVC模式的请求处理响应的基本开发模型 ASP ...

  2. (转)js的call和apply

    1.方法定义 call方法: 语法:call([thisObj[,arg1[, arg2[,   [,.argN]]]]]) 定义:调用一个对象的一个方法,以另一个对象替换当前对象. 说明: call ...

  3. java JDK8 学习笔记——助教学习博客汇总

    java JDK8 学习笔记——助教学习博客汇总 1-6章 (by肖昱) Java学习笔记第一章——Java平台概论 Java学习笔记第二章——从JDK到IDEJava学习笔记第三章——基础语法Jav ...

  4. mysql case when用法

    SELECT CASE WHEN `categoryid` =1THEN '参赛队员'ELSE '指导老师'END FROM `blog_article` WHERE 1

  5. javax.management.NotCompliantMBeanException

    public interface QueueMBean { } 假如接口名叫 XMBean ,那么实现名就必须一定是X,而且是大小写敏感的. public class Queue implements ...

  6. Qt拖拽界面 (*.ui) 缩放问题及解决办法(在最顶层放一个Layout)

    问题 使用Qt Designer 设计的界面,在缩放的时候不能随着主窗口一起缩放. 解决办法 之前遇到这个问题的时候,都是直接重写resizeEvent接口来实现的,在自动生成的Ui_Widget或U ...

  7. Spring冲刺阶段二(1)

    我们首先是根据同学们的评价来找补自己的不足之处,其中同学们反应最多的是我们的界面不够好看,但是我觉得虽然不好看但算是比较简洁.其次是没有体现内网在其中发挥的作用,这点我们还没有实现. 根据这些不足之处 ...

  8. 查看sqlserver版本及其补丁

    select @@version select serverproperty('productlevel')

  9. C#遍历List并删除某个或者几个元素的方法

    C#遍历List并删除某个或者几个元素的方法,你的第一反应使用什么方法实现呢?foreach? for? 如果是foreach,那么恭喜你,你答错了.如果你想到的是用for,那么你只是离成功进了一步. ...

  10. sell-- wordPOI

    1. http://poi.apache.org/ 2.创建项目,结构如下 三: 查看效果 打开: 测试源码: /* ========================================= ...