TYVJ P1031 热浪 Label:dijkstra 最短路
背景
USACO OCT09 9TH
描述
德克萨斯纯朴的民眾们这个夏天正在遭受巨大的热浪!!!他们的德克萨斯长角牛吃起来不错,可是他们并不是很擅长生產富含奶油的乳製品。Farmer John此时以先天下之忧而忧,后天下之乐而乐的精神,身先士卒地承担起向德克萨斯运送大量的营养冰凉的牛奶的重任,以减轻德克萨斯人忍受酷暑的痛苦。
FJ已经研究过可以把牛奶从威斯康星运送到德克萨斯州的路线。这些路线包括起始点和终点先一共经过T (1 <= T <= 2,500)个城镇,方便地标号為1到T。除了起点和终点外地每个城镇由两条双向道路连向至少两个其它地城镇。每条道路有一个通过费用(包括油费,过路费等等)。考虑这个有7个城镇的地图。城镇5是奶源,城镇4是终点(括号内的数字是道路的通过费用)。
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAc4AAAGfCAIAAABZVqW1AAAgAElEQVR4Ae2dO3IcudZuizd6KGIbHRoBNQLxd9pqVx5lis6ZwfF+hzJFT25b7RxyBKR7nY5jNBlxh8K7q0CCWVn5QOK5Aaw0yHwA+7E28BUq63X28H//344NAhCAAARSEvg/KY1jGwIQgAAE9gTOXl5eIAEBCEAAAkkJsKpNihfjEIAABPYEkFrGAQQgAIHkBJDa5IhxAAEIQACpZQxAAAIQSE4AqU2OGAcQgAAEkFrGAAQgAIHkBJDa5IhxAAEIQACpZQxAAAIQSE4AqU2OGAcQgAAEkFrGAAQgAIHkBJDa5IhxAAEIQACpZQxAAAIQSE4AqU2OGAcQgAAEkFrGAAQgAIHkBH5J7gEHPRE4OztzSZev7nShRJuWCCC1LVWzQC4jbXXUUL9eBdLDJQQiEeCrwSOB7M+MkUtHbV3GY5U3irVlX1yFQBECSG0R7BU7TSqLSY1XDJ3Q6yeA1NZfw1wZRFzGroac09dqMDSAQDgBpDacYRcWRPvyP7tHcLsYW30kWWD+9AG2nSyL650JQIDm1/p2qkgmpQkgtaUroNh/cZEdsZF4UNsREw5rIcDYraVSuePUqWva1D93VfBXLQGkttrSpQxcp87ajBFci4KdWgggtbVUKl+cynXWgqglThswOz0TQGp7rv5E7nXpF8vbiRJySiUBpFZlWQoFVZfOWkiVhm3jZ6cHAkhtD1V2yrFqwWJ561RjGpUjgNSWY6/Jc9U6a0G2kYVNh52WCCC1LVXTM5eWFIrlrecgoFtiAkhtYsDqzbeksxZ2k0nZ7NipkQC/wlBj1aLF3KokyYfKzPI2GikMQSCMAKvaMH41925VZ21NjNryWV4LhJ2CBJDagvBLum5eZy3cfjK1KbOjkAA3EBQWJXlIXakPNxOSjyccOBBAah0g0aRyAqht5QVsIXyktoUqbsqhqyWtJYPaWhTsFCGA1BbBXsxpnzprcKO2xYYdjnc7XhbraBT0rLO2zAJB9kV27Rl2IJCBAKvaDJBxoYiAiKxsRnAVhUUorRNgVdt6hd/yy7aknVMxEbi3WFT8zwZERbYEUZoAUlu6Aln8Z5AVq7BzkmoazF3NgmHsJAOWsUuOeyXwS6+Jk3c0Ao4aakTWsXG04BYNSUio7SIhLkYjwKo2Gkq1hpKqiZ9xv16JCKsKJlGOmC1OgJfFipeg1gBEobxFyiwnpbuG5E0wy5E8f/8k0X76/rzcjKsQmCPADYQ5Mo2c91bD5fzDzdr7CWZn2V3qq0ZtJyO5/3p2eZvaP/bbJ8CqtuUahwtiy3SOczNqe3xuf/T5h1yR7e7q9BpnIOBMAKl1RkXDNwIRFVw0TKy9GS78X1UwhVngPjYBpDY2UTX2IgriMKfoZlUJnKpghtjZr50AUlt7BYk/MgHUNjJQzB0IILVtDoToa0+DKZFZbeqmLZ42x2hnWSG1nRWcdN0IoLZunGjlSgCpdSVVUbtEa8+KCEQJFbWNghEjhgBSy0hwJZBUwXXqms6oXAtGO00EkFpN1YgRS1JBjBFgZTaebi4E6dnhcwyP1+eH/a/3lSVBuOUJILXla9BMBE1+evXDtwdZ20qN5O/b9uNzMzUjkVwE+GBuLtJZ/MiaS+Qgi6sjJ81/elWolmJ7BJqDagmwqq22dJoC7+HTq0ZtNVEnlpoIILU1VWs5VpZdy3zCr6K24Qy7tYDUdlt6EocABPIRQGrzsU7qqfYlbS3xs7BNOowbNo7UNlzcyKmhMgYoHCIPrD7MIbUt1LmWJWELrA85oLbNlDJbIkhtNtQtOEokMTU+VCRC0cIoIYcpAkjtFJWqztWoU1UBng0WtZ1Fw4UTAmXe8X4SBif8CeSX2lOP8jmx8+vH4xyu7l6cPlV1au3Yjvaj2uPXzreV+JDa6itZZKrHchrLTtkqtpFFWYbNe+cGQt0lZpLXXT+i74YAUttNqaMmam5TitB7W5W+sokdbwt6OnLTVk8t1EbSyFhXyzdpYBqkyi8Gv15JYYYbbzKpcCxYMARY1TISgghsXd6KHskW5FJrZ9a2WiujIi5WtSrK4BGECJaqZ99WQCejGl3VFrwH/7kuDac2lzLnXQjwfbUulGjjRMCIrFXVYZ+R/sphq5LUcGrDgrK/lQBSu5UY7ScIDHVzpKoTrTkFgf4IcK+2ypoPpa3KBJoO2ixsm06R5DYTQGo3I6MDBFYJoLariHprgNT2VnEt+TYvRs0nqGUkVRIHUltJoQZhart7oC2eAarCu6ht4QJoco/UaqoGsUAAAo0SQGorKyxLyLoKxsK2rnqlixapTccWyysEOpGhTtJcKXb3l5Ha7odAGABW2S78UFsXSm23QWprqi+6VlO1iBUCAwJI7QAGuxBIRoCFbTK0dRhGauuoU6tRdiVAXSXb6oj1zgup9UaXu6PCuwcKQ8pdlY3+UNuNwNppjtS2U0sygQAE1BJAatWWhsDaJMDCts26rmWF1K4R0nG94afqHUpPhynrmEYlo0BqS9Kv2nfD6p+hLqhtBsiqXCC1qspBMBCAQJsEkNoK6sr6sYIibQ+Rhe12ZhX3QGorLl4zoXcrOt0m3szQdU8EqXVnRct3Aiy031mE7aG2Yfyq6Y3Uai8Voqa9QsQHAQcCSK0DJJpAICUBFrYp6WqxjdRqqUTncXQuN52n38PgR2pVV1nn3QOdUakupENwqK0DpIqbILUVF4/QIQCBWgggtbVUijjbJ8DCtuEaI7UNF7ey1BAaKRgQKhu1zuEitc6osjfUeUtUZ1TZi4NDCGwjgNRu40VrCKQmwMI2NeEi9pHaIthxCoElAqjtEp06r/1SZ9gVRC1PtCejlFk0eX50ss/n6UZiHBGNiBU8DKz1ZOSVopjMhZNCAKmNPwzMxJvTi+Wr8aOJarHPB4A5hFZhm6z1XNac9yOA1Ppxm+7lIqNmWrq0nPbBWQUEHMsXWGvpLo7mdFwBBkLYQACp3QBruemmWWEnIRNpmarCq5sKLfGH1Fr6bnWnkBghCQFeFoszDPzmg5lIpxH4WTu1E/dMnqjmmMTNxc+aEPCGYPKS7n6u6VU7AaQ2QgW9p5/41qwsEdA0ZMJUWerlnZP0lW2r2np08Y6QjukIILWhbEN01vhmLoXWoFT/+69S/eH29T5JKIyQJFjzGkVqg3jLNJNpEGTi0Hk4l2LZDI8KC5bAfFEubp6keq/bj8+2x+yONBVrs5e50CgBpDZyYZ+/f5KJ9LolWuREDtnJnGQkGuHUNLiRNjGKnrtHgh5dguuAgZgEkFp/mqczUJ5Qftn9lFlx2O6ubi/PnNVWuohB/2jo2ToBRkjVFUZqY5bv84+Xh28f3ix+/tfNxe72rzS3796c8D8xgdMH1GOHj9fn0mS/OT+q7g346aZfr+OAOSpDAKn15C5TS8b9eueL387XG723cDX73oO9cgTkofVte7q52PIcplzMeC5EAKlNB/75P38+7j7+ale5q56ctHvVSoIG+R8ABIU4TZBKKpMfvj3cXe1u//39OZWHV7vVkUnMoxrzSG2qUt1/Pb9+vLpzeU06VQjYDSWw6THm/LeLTf68RdO746bwaByXAFIbl+erNXkfwuWtvA0IoU2CV6fRp/9uexKjMwuiSkQAqY0PVnT2/Hp38zR4hSy+EyyWJ3D/9ZO9X/D64PovhzfWxgichW0MilltuL22kzWkOpzNPbWU93td3l7dvXiuZ+fMFoRSMKSCrg3wtQAO1X6tjU/R1+yvlD2w+4p1LkclgNR64pwc5YE6K6FMmvUMMVK3giEVdG3gpQ4g0H5g90gDBDNOBLiB4ITJqdHz93/fSkN5z89ge3+KuW6DmbPOiBYDAtxGGMDQvsuq1qdCRhOjK2N0gz65nfQpGFVB1wZD6gCi2I9i5KTsnIhMgFXtZqBJR7YY3xxQyg5Jk10NvO1VW1m2q/BpEJcAUruN53B6xBUCY9nYlP1tYdE6DYG4JU4To+dnfBMFg9k5AkjtHJmJ80Odnbgc6ZRMbzPDEdxIRNs3YwZM+3nWnCFS61q9SZ2NNcRPje/l9vDhVLkkm2uUtItNwFQhttX9W02i28SgZgJIbWh1wqeizDoxMhmHnDfbXm6zT07xKN4nA8t2UgLIn3ie7OKmFtdaHgJdeUFqncq9LDoho3zZsg1OXBgvreqOzVThjiEfMTBb9LiW41qLmC+mhABSuz4M7MRYaOo3yl0sD52KF+MIwR1iybBvsEdxtLXoUZxipDiBX4pHoDwA94lhZ6PsrCZltNKl5akp08uqrZ+RU7OcKUJAyuc+xlYjjGtt1R0N3AmUvxnnHmv+ln5z4FQErZ3TS+FJGZvRBdfGHB5huAUlwQSiXugeN8G41sLLhwUhwA2E2WHgPV5F9cwmFswmPszO25X1Ze9sWCcXhr5OLrZ2wvxK5pZPO8ckYFF7GJUBYLpP9pVL0mDyEifbIMANhOk6mokxfc35rMwf0zaKtWW3xpedrtb1cq+Krg6/RKts2FYWHSGbopheC11WG7hnHdGUu1NaLhNgVTvBJ4MyTniNcUrmmNkkBdlimNRi4+13vORnZcpvQ8hznA8V2P8xjV2ClpZz1ly600YzAVa1mqvjH5tMWuls5q3Z32TLCMSmLkkbGw3ySCR1VMb+pD6WjVYnsaTlUG4cqR0XSJvKjOPbcmxmu7fgbnHVdduIqhpRIiOa6rq6kZJHao9AtqSzNrGh4MrJiLpgXbCzSsB9aCGRqzBrbMC92vequU+G9z717MkENpukKVs9gfcYqVQqSo1i2emxBrFzRmpficrIlnEZG69Ge6uC2w8KjeV5iymWSsay8xYX/z0JILV7cB2Ky1BwoyygPAegczckwxkVDTUSQGp71Fk7Eo3gGhWrQnBt5D3sxHp0iWWnB+bpcuxdajtcz04OJqO5QkO2yQbFT8rnxCSGM/np993u8fr8EOnX++JhJQ4glkrGspM43ZbN93KDcq6GMmNlFM5djXU+j5co0Q6lNgOZTTFXhHGUV2Dkgd1NMFGMjPLi0J1A16taBt/kQBGFNZvwkW2yTZGTEpWqeLJBiJJ4FCPZUm7PUb9SK5NWBl97FY2YkfCRbS+3mgQ3YoIVmTKFqChgQh0R6FRqRTtk7I5YcDiJZS+3CG4Tg8PUsYlU6kuiR6mdFJT6Spc34oPevq5wWeTmZf/qLYpQRjFSJP3anXYntehsyJA1gmumaxHB7VwpJtKXL5c83tp/W0bICC7Xty+pRWdjjTSjuWaOx7KJHRcCE2q7u7h5MgXZ//3xecXMlIWVLlwOJ9CR1KKzy8PFg4+Z30Zw5e+y/W6veoBdZhWuleEWliPk6ikBvtnrlAlnthGQeWs6GLW1h9us0HoLAaOVoN7CrHDbXla10VcWheum0r3MfNkEtWzpAjQu0tmv0PLbp+fOztxv1IIxc6G7WNXKzJeBlZlst+4MaqO2YE83DIxWyl+5PWu8yGeXzy/Pdnfrt2vTRYXlOQLta5AGndUQw9wIMOcTRWgEV1yIHiwHsOlqomg3xeDeOGm0I+P7H7v8++bp4dsHt/hG3d060cqHQOM3EBhJPoMiXp/Dmmv/RwohWzzDWHolYNhaHOe/Xdh9l51Rd5cutPEj0LLUytyWkeTHhV5xCUghZDvobQTBNabiRpjIWoZBOKTx9N/H3cdfHZe0iVLG7CSBLu7VTmbOyfwERBTEqV3emsP8YbTk8f7rp3/+9WAyknu1l7fyHtu1N9Ye52+UmlocU4l/1Oy6L8Nqwr0aqoI5DbtUeEZz/SZ5qZhP6S2fSR/n/vasfIfvYbvyfkksfZzLnNq/2uYNBMZNFSNXRFY2KZZsVQTsEuTgg7Kfvj+79Ahs8/mH4bh/xnC7bUEb6JnuWwg0KLUyb2XsbYFA25IEjFAc9HaD5hqNLhn3lG95Cv/X76/K93Szuz7f/3JEti2ESUjfbAlW7ag1VdKpszqjsgNXVXgSjAQmM9+GN7ejKuyJIPdvc71+dMtlorvvKW8s3h19I+2rX1OrWsaKx+DVBs2sCSUq2TzSoYv3+tS7I8xdCLQjtTIzXZZCLlBoU5xA/YL7/P1LgSVtYOFQ20CAC93bkdqFJLlUKYGh4J4ucj10QZ7T71fLZnP/voAN+KyH8z//eNrQL2pTDzJR/WNsgkAjUitzR4bXRH6cqp+AEVwjH1Jo74TkvQFfdj/frN1d3V5u+HYWV68fvj28evi5+yKdkui5QzAGl0PDcRPvjmNDHB8TaEGh9Ous2gjVBnY8So+OjNqKIsjZkPgPr1p99H4j6lFMMwf7UP3f6jpjdMtpPz5+vbbE1WPb6le1DIvehq1ZNErdZQvN/eK381ATqvv7LVH9eqkGoSC4uqVWJptZ3SggSQhZCRjBNaLgpbnP//kz+tcFyC2K9xsGsmoWIle/V/mpAtQ2+miuWKoq0lm1oaoNzH2gmxTkr3Rxf9w9fJo1wXP7w10JeS/tYbuSj2+5h/TaKcE/vyr79UoQfiMmkdochdQ5anVGtbUewyxkX7qvqttBD3cbvtV1a0yH9sPAvAzE7OQXjF+vmHE3ZKvWb/ZiEDQ0CKOlYkRWxoaxOKm5eXQ2WkqRDAkKpkwklp5mqrxXy6DxrHaL3YyIDDOTM2aTcSLb8JLcNzi/lncdOP9KwbBz5fvCZERjNSGPLqs2u21Qn9TKcJER0G3BSNydwEhwU92fdQ+odEsP6fToUjpLpf4rk61KdVZh2ApD8p4iLrlImwn78j3ayRa4LlFNhJT4lEdUHl0SJ1Gl+Vrv1VYJm6DLEbDPhIzm2sNyEZXxbFapm9L36FImN91ea7qBwKOr7rFULDqjBY7upbFpbzTXsdfWZprHqkl/a0a0DyRQjdRqHruBNaB7fgIHvX39AYikmps/NRePW9V2a3uXGHprU4fUorNxxyU8DU8juEZHehPcreq5tX3cEduANe7VNlBEUgglIDoiJozamv1Qi/SHwDGBCla1LMGOS7Z+JO9qetvy/JLgekipW0RZc4kRY8dobuqYi9s3ybqHsbW9u+UeWmqXWnR26yiUT0ONfklw9LutIF1Gupfbt9/xbV5zTabLQLgahYDq99U2IwrFEjl8CnX0nazFgokyYOeNJMpLzIpPkaR5zxNXEgUz4SnGqU3RbmocI7pGbOhd1VLRRoZY5Wnsl7hvi1zHVKobuiZBx+xo5kdA76q2uvG6UIBCuUytacN+uWAhRw2XUnMW+yZN0aaFfFOHseA65JJ72O4tQ+JprK/SVS21DBhnorDCT7b9Lwm+/Dj6amo5uywTAX7b7yrozHbAO/VJ3/YZ7DMUCEKgj1yjZalRapGDsPIe/ZKgwHz/YYAwu/S2BJoUXATU1jfFjro1TpM6WzCp/ddZ7d5/q7BgJCmG78hmkezEqYQhOmWDKRKG9R644x68e8vAkNrornFV2wZZsshPoMi6bLjCNbKbP/GIHoswjBi/WlO6pJbHyeCBIqvY9xsGctf28vb9lwTBG4x31oAR3DZ0yjELx2azyDq7oOiDuQhBjLH3+cfTP/Kq2OWrLfmlwoej18Vi+MDGMgGrQbKz3FLtVZPCavyOzdSmmTMwRfdqG5ZaJakpCSPp+C6e4zAA2TfJrmpWUiZ+xoeJLFhwbLZgoZNLWm4gULBOBlzqNM06K7UXR/sSjNlkeMvm2EtJM4ncJWbHZkqSKhiGCqmVikrBClLowTWQC1a5UsFFRiOOGRVSGzEfTEFALYEaBddFbV3aqC1KtsDKvyzGaitbsXGkgYAIk4Rhn5ubQw2BzcVglFR/nHPxKzlfeFWLzioZBy2FYaShSEbu41mCNJt0ka1ItBGdSi4NZBERyKmpwlJ7GhBnUhCQaSCTIYVlbAYSqEJwXZTUpU0gq6q7l7yBwPyveugQfEQC5oHQLgzNYUT74aaMkioMLDy1PBaKrWrR2TwFxktFBETIzCazQzZtkUtsy1GtNtCWUc54ikltziTx1RuB2ue8WsGtHWzBiVBGauWxUWpWMO2uXEO70nIPBXd5OZkzwWW1Xb6aM05tvkreq9XGgnggEEIg0UOaXZQYtbWHIaHSNz+BAqvaRCMyPzs8QiAnARFZ2WT6yJbT76kvE8bpeXNm+epcr+bPJ5Fa+SK/t+0Tv4zd/BjSmWCrE17yMqmVFVwTw1zpl6/O9Wr7fHyple9I/ev3/WiQ7elmd30+Vtu2gWrLTiakFEJbVMQTSOAwvV5XuKU0V2Io5TqQXpHuiefh8W+2djvtCyZe0HWRAT10mjn3zO5GmcphkcfUhawXLg2D72Sfl8U6KTRptkzAiKxImyRZRHBbhhspt6Sr2qM1bc8PcQVzL+g60hD1N5M598zu5rhIGOZSNs1dSHzh0lz8rZ6Pf692txOFFcKynf/5x9PLj45+b8Vmvs/+/Se+ig0eiSLbfCuW5LxjyV0IzF+PeUUPasnabBKSbDGTnLEl7vI4mvFfx+kUUvvh28NrsX/uvkgNRHPkr5yqA4lvlPK+iy+7n6+Zv9xd3V5qUFvfbOhXPQEzFGXqyZY6GfE16WXufOp4FNpProAiQJe7u93tpUBXmH+6kIZ3T2QUFkm/lN90VLdazkYgm6OtBEx7CU92Ug/CSQiTJ/2yqLpXilXtCZD+dPYVwcVv5ycwOAGB/AREZGUT1TNbogCMi5HxyZOjNj0cRpdaWcW+36SUld3lbQ8YT3N8/s+fj7uPv344vZLrjEwqGeW5vCn1wzwfFkZomC2p4A49mn1xKh5Pz3d1JvqbvT7/ePpHXhW7fKV4tds9CuiumEqy91/Prx+v7h46ekmwtxJXna+Zkkb+4k5Po6pxbVaN2gaffOHT4drqcJd2d/P08O1tTVsEQhGndmDp2cnAIYOLdDwleGM8oj5OApk8mS4vbZajr2qPEuwQ7qnOHhHJddAh+VxoW/NjFVbGjORmD0PyFCOMwBHA6PdqR/b7OpQb1efXH+9e3tezfeWvMlsz7VWGpisoAWVYGc0NDM6YGho5PTO82vx+2lVt8/iGCe7f1nZ7ddfVZzaG+bPfBAERRMnDqq059MvMaGuIBT+/OnslXNX29Qzi+fu/9++1kM8tDDa+1EznqCeqNQKij2Yzo3mtuet1sSkGXVu31S7hy2LCVMi2hcszm8woMrvzhJKxW2ogqe1nRDXtShKUC37TeQRndDjtr8WzCVe1LeIipyoJ9LyYilIwAWgYGs3dZNN0tF1Gh/Z88zuppLbbx67mRwwJjgj0M9T3cuv1kTPTy3IbHdrzbe/wsljb9SU7CEQmIEJpLJoVrj1cdmPk1bHxsqlKr6Za1VaKo4Gw+1lkNVCsqlMQ3ZRNxptsWxMxHbf2qro9Ult1+QjelUCHc9sVTVi7vdy+Ce6y5ppmYd4q7p1EaoW4YK2YCqFDAAJbCOzl9rDtl7jzi1xpYq8O97e4qrUt92prrRxxQ0AhARFQicroqdkfBWkUdvKSbWnl2J6RneUuw5Y695FanXXxjErGaO0j0jPzQt0APgneDMI5wZWrhpvdMUZMe9mfHMPLVyfDUHUSqVVVDoJJSGA0sRN6wvSBgFHMSYkc1cK0mVRYy9JedWlse+nZQWr11IJIINAggWWJHGmuS/7GoAiutezSq3ib+FJbHYLiNSAACPRAwEqkJCv7soWsT013+VsLuvhSW0vm7cXJg1x7NW0vIyOORmQDs6tLbZO82SuQIN0hkIiAmZyJjGPWnYARXPlrdtw7jlpK9yiqPTKb4hCpTUEVmxCAwBKBiM/AalHbLm4gzD3uBT6iLg0lrnVAIKJedECr9xRbllqrsHOSutqgotHBtK+oWJ2HGn2smoXt3DRXQrvNGwhSS1NOob9QAHNV/pr2SkpCGEkJmHIndYFxfwLys1ETWws/ZxL/vWlG4/xZB/f0DsC742rI6Sxb1xlcWF+178RiFctO7Ty3xr+J2/4n+3brv9i3yebWgKO0b21VG0Kc9U6UIYURCCwQ2DZDDz/Zd/X75wWD5pL+ydvUvdptVZyqnimY/J26qPdceOJ6cyOyjgk8/+fPx4ubn+tKWwGjdla1seRG/8NjBcNKd4iUWHd9bHT3/3v9ePHH/3ywJ2reaeRebSydtaWMazCuNRuk3Ult3zpqZiecWLiFZmBuSsSd2/P3T+fXH9dv0765d7f81iPr/xZuIChHnLWeOINAIwRaunmwL0k7NxDiDrCKnmNW9EgzeCdPC2/fiTvk6rImo85vkzSl43qyTd082Kcbf1VrREr+rtOM0ULKlshX5kRiwFBtQ54P/vX7y8uPfZD754bnn3ZPD98K3YdrprhOspVgXHhPOrcJa955cFdqeCQAtkuiU24046ST1Fcs47HsTCJLanzSY4STW+/DRXA5NhHIbdhd9sfWcx17S16uACf8DNFNXJZT24fHus1pT/nOxl/V5osdTxA4JrBV8ra2P/b2/kS4Rr0b5aLq8HDzoJH3eFmwda9qkz6UGeNRXEQxYms23Elneehl076EtKl9xMabJC8EXUjfiPlWaioFvRQ24+Jt8GUxXnuRISIjr9QmejezPd1cvI7ei5unmTZBpzfNDfEkiDZ1oXEUAtHJSx3FZpTY0hlJIrXRUbrn//rai0Tw8vJ0s7s+L/xKt9E7iT+R8M1ZPgAo82e+WB++PbyG9HP3RYB8vZ9vyxUItEUg1aNBnseZFS/bb66Piiv2R2e2Hoq0SJeVOLcafWufyOyb+bT/Hb9GJGkQ3gC9OyZNpy7jsRjGspOaHi+LrRM2crnejhYQgIAzAZlW4SoZbsE53tCGSW4gSFCGY2h0Qf2fv3+5fry6+9HEd1UEkVDRWVax7zcM5PnG5e3O5RubksauYJQmzU+78UD+FemsVKK9Ve3hrsHjfpDtX3tp6T3Q2ifOcnyffzz98+lMvnvUbFd3Lw88CC4j6+Gq99q2Lp2VUqa6V7s3nf5lwWUXRnRlTocsbJddOE6GKEZGvlLYHLno4dADo0eXHmPKPKgAAA5ASURBVEiG5ChIpbvIrouRTY1dDOZpU7fUCqPlcR/42kusoi4H6VfpFDb9Iqm6lwdGjy5VI8oWvIA1viY1d/lqtiC9HSW8geD91MA7mUQdmVqJwGow28wo1QAzMAarsFZVhwbt1eHJivZTvSxWCEGS117MbJTym61QariFQC8EZMadbrUnn3BVK2iEl8iT/E2H6dhFzNdeTOTy1yRiUzBn7GHS7KyX0U5qqiN3HEIAAoEE0uqgBJdBFBK5sGbtziRruTo8P6m8yxaG3R33oxt09Ntks60wt7ZvEhpJbSWQdlUr0RyvOreG59Q+hQv36TTSVulogx5dsufZUUVg0/hxHxiqciSY4gSSS22eDDfNltWQQqbTUF6HshticzVgGkAAAsoJNCK1QjmW2kbURCu7xuZQee0lj/ERMUIP73SBAAQ8COSQ2lgiuJpeuKNJFQs3ayIfyutQduXq8NJqmjSAAASqI5BDanNCMbIoHj3Ea1JnEwU/Cg/lTcTZ0awZNqOiOPalGQRcCGSS2pxD2UyYTbpplK7gTBu5Hirv6JJLUWkDAQhoI5BJaiVtkYxN8hdIyrgzRubUyiraXIPAGLy7D+OxQVprw6v2JDsQgIBmAvmkNj8FK0mnamWCsQ3yx+bucRSk5GLTGV1yt0lLPwJCHuZ+6OiVVWplmBYZrOHTo1TkkwPUpmM11zSz5yd7cXKZgKoSL4fK1RoJZJXaGgFpjnmkrSiv5mIRW+cEcksta4eQAbf8nGBBeUeXQmKgLwQg4EEgt9R6hEgXPwJDeWXB68eQXhCIRaCA1Fa6sK00bDNQhrIrZ1DeyflTdYknM+KkHgIFpFaSZ0yXHQELyju6VDZOVd6X796oCpVgFBIoI7UKQegPKd1UH8orC94RAf0DgwirIFBMalnY6hwfQ9mVCIe6M7qkM36/qGyaCzlKG9NsoY2fd3r1QKCY1ApcGbIydhm4msfZsDpGaGy0w0v2ZHU7m9TTpLypS3VACDgRgZJSmyildGZlpvX82DDS1tqVd6ti2vQR3HRTrGHLhX/G0YhXw3xjpVZa4uX3MWX7ej/IR2o33PbX37ZBK6W7EqkJ3js+013seFugY1cECkutsJYhy3jVPeaev3+6/PviYjnIOdlVWFyjs8vpOF5l9DqColl5qaUGygk8f/9y/fHu5x8bwhzKrhEjUTezbbCSpqmEISFFtI3aRoTZsCkVUstg1TvCjND++BwSodTXbm+SW0Z5o+uswSLZieUQRPRtnoCWl8XMYJW/yokXiTORQDigvv96LivaFxHaZ4fWLk1GJR4p1Oiqi0H3NkkxFhkY7rnTsjgBLVIrIBisxUfDKID7r5e3VwehHV2IdzjS1qHyji4F+kyqsyY2BnBgjdrurkhq2wZdX3YZhPYEylBeh7IrDYeXTvpxAgLaCai4V2shmXWBPSy+Y97iJHP+7OzT91hPoYtn5RbA93/f7na3l4fk5c/59aM5zAZCBsNwewtk/98tg/dW0kVMvR8n2xMvHuElCwfDigjokloBo2ewyluc/vr9dbI/3eyuz19FJnOE2WRiNCq/Pbzmbv493cibveRuwsvDtw+jlnkOh9EIk+GWJwC8QCCEgDqpDUkmbt8P3x7sC+8f/uePi93jf5/iesCaJ4Gh7Mr+UHZlf2RUzkib0cl0hyaedPaxXCkBjVLLYK10MJUKWwbMcBsq70pIgztExx+FW+nHZQhsJZD1AX9TcJkXI4uxyb2Ew5ue3la5W2Pb2t4G493RWuh8RwAaAqLFIxQis4c3WLwVdXQ54JCqBcBrtqvGVa2BLXPDzpNC+EVhJQTZzv/84+kl/pQslFZnbs2Cd5z06/srkhRVwdAdp8txcQJ6pVbQlB6ycrfWzNOXn7svorj221ZKB1Z82FQfwP1ftxc3/wr6DFz1DEggKwHVUpuVxKIzEd27q93tX8NvtlrswEXVBERpdx9/3b09a+nwvXyqy9NkcNqltuf1o6yjJf0mh52GpG4vv+x+mmctw/fyaQiNGBokoF1qBXkhtZVXTewNg93+awRvd1e/84yziTnw/M/fu93Fzc+3twh/+Pbz5uLx+n950tJEeXUmUccHc43a5l3iff7x9I+8Knb5Wjd59/7DUGhLhKRzCFUY1YdfP0rUv5b5LEaFvAg5AoEKVrUmywJr2/dXxcR5kpeqIxQQEz4Ezn+72P39z+ij1he/nfvYog8EXAjUdDdQ271L93jcW9qaeXSxfdmxBGYxHr2r9ujA9g3ZmfUbYpS+NROo4waCIcxz9ppHmrLYP/94efrt0/nbJxzk/hDPW5SVqLFwalrVGvR61gvukbi3tMPLo4vty86QQH6S+T0O82VfJ4Fq7tVafAVu2lrfxzt6IjmOiyMIQEAdgfqkVhA2r3Esi9RNFAKCQBiBKqVWUm5ebcPKSu93ApmHCg+T7+jZGxCoVWolhcxTaACNXQhAAALbCFQstdsSTdMauU/DNbLVbGViSRu5cg2Zq1tqs02hnBVnuuakjS8I5CFQt9QKoybVNk/tu/KSYZzwGNnViNqabPVSKwlnmEVbsdJeIYGk4wSdVVhxVSG1ILUCNOksUlUwggkhkGicoLMhRemkbyNSK9VKNItWx0Fcv0zaVeCBDeLWS4KhZIEV6aR7O1IrBYs+izoZBL2lGXGcoLO9DR7vfGv6uhnvJOkIgREBq7ayM7rkeCgiKy29uzt6oVkzBFqTWjOFmADNDNB0iZhB4qGYHl3SZYHlWgjU981eLmTzP61b9rh81Wbk2My2ZycWASFvTC08SLu0iRUPdtoj0Nqq1k4YZKu9wZouI6uwVk9Pfdk2p5c4A4FVAm1KraQtEwO1XS0/DUYE0NMREA5jEWjqHQgjKEZtRyc5hAAEIJCfQMtSKzQrUlvW4PlHPx4hkI1A41IrHPOobR4v2YYFjiAAgbgE2pda4YUOxh00WIMABLYS6EJqBQpqu3Vk0B4CEIhIoBepjYgshSlu1Kagik0I6CHQkdSmXtimtq9n0BAJBCCwlUBHUitoUMOt44P2EIBAFAJ9Sa0gU6i23D2IMpQxAgHNBLqTWimGQrXVPESIDQIQCCfQo9QKNdQ2fOhgAQIQcCfQqdQKoBRqm8Kmey1pCQEIqCXQr9RKSTQoIzdq1c4NAoNARAJdS61w1KC2EcuJKQhAQCeB3qVWqoLa6hyaRAWBlgggtftqorYtjWlygYBCAkjta1Fiqe0mO9yoVTglCAkCKQggte9UN6nkezf2IAABCKwRQGrXCHEdAhCAQDABpPYIIQvbIxwcQAACkQggtWOQ4WrraIEbtWP0HEOgXQJI7URtHbVyoienIAABCEwRQGqnqPD2r2kqnIUABDwJILWz4FjbzqLhAgQgsJEAUrsELJ3acqN2iTvXINAcAaR2paR+auvXayUULkMAAtUSQGrXS4durjOiBQQgsEgAqV3E83YRtX0jwX8IQMCHAFLrSi2i2nKj1hU67SDQCgGkdkMlN6ntpsYbgqApBCBQIQGkdlvRENBtvGgNAQgcCCC1mwcCarsZGR0g0D0BpNZnCISoLTdqfYjTBwKVE0BqPQsYoraeLukGAQhUSwCp9S/dqtquNvD3TU8IQKAqAkhtVeUiWAhAoE4CSG1Q3bauW7lRG4SbzhColgBSG1q6rWob6o/+EIBAhQSQ2ghFW1DbhUsRHGMCAhCohABSG6dQSGocjliBQKMEkNpohV1VW27URmONIQjURuBMBKK2mFXHO9JTOZwMF+yTWDgJgVYJILXxKzuU1zlJtW3mGsQPC4sQgEA5Ar+Uc92y51UBtQ1Gq+CWoZAbBDomwKo2ZvHNWtXKqKNpv16OxmkGAQhoIIDURqtC4Po0sHu0NDAEAQgkIMA7EOJADRdKWQub5W2cgLACAQhoIoDURqhGuM6aIFDbCMXABARUEkBqk5bl/qvI8NnX+6ROMA4BCKgngNSGlmh+Sfv8/dPl3xcXmxywsN2Ei8YQqIUAUhtUqXmd3T1//3L98e7nH5vto7abkdEBAuoJILVpSmSE9sfnNNaxCgEIVEaAjzCkKNj913NZ0b6I0D6nMI9NCECgNgJIrX/F5u4e3H+9vL06CK2vbXMPQf76GqAfBCCgiwBSG7se4UIbOyLsQQACxQnwaTH/Ekyuar9/Ort+nLB5cfP08O3DxIWZU5PGZ9pyGgIQ0E4AqfWvkIsayhu+DrdtN79A5mLcP3R6QgACeQnwDoS8vPEGAQh0SQCp7bLsJA0BCOQlwA0Ef95Jn+MnNe6fMz0hAAEvAqxqvbDRCQIQgMAWAkjtFlrHbdN9gpYl7TFpjiBQPQGktvoSkgAEIKCfAFKrv0ZECAEIVE8AqQ0qYYp7CNw9CCoJnSGgkgBSG1qWuGqLzobWg/4QUEkAqVVZFoKCAATaIoDURqhnrIUtS9oIxcAEBFQSQGrjlCVcbdHZOJXACgRUEuDTYjHLInIp5kR2Nxn167XJBY0hAIGyBJDa+Pw3rU83NY4fKxYhAIEsBJDaJJjNQlVMz61wVxskCQujEIBAIQJIbVrwVlJHbuYkeNSMQwhAoA0CSG0bdSQLCEBANQHegaC6PAQHAQi0QQCpbaOOZAEBCKgmgNSqLg/BQQACbRBAatuoI1lAAAKqCSC1qstDcBCAQBsEkNo26kgWEICAagJIreryEBwEINAGAaS2jTqSBQQgoJoAUqu6PAQHAQi0QQCpbaOOZAEBCKgmgNSqLg/BQQACbRBAatuoI1lAAAKqCSC1qstDcBCAQBsEkNo26kgWEICAagJIreryEBwEINAGAaS2jTqSBQQgoJoAUqu6PAQHAQi0QQCpbaOOZAEBCKgmgNSqLg/BQQACbRBAatuoI1lAAAKqCfx/DWe3i8dKGxcAAAAASUVORK5CYII=" alt="" />
经过路线5-6-3-4总共需要花费3 (5->6) + 4 (6->3) + 3 (3->4) = 10的费用。
给定一个地图,包含C (1 <= C <= 6,200)条直接连接2个城镇的道路。每条道路由道路的起点Rs,终点Re (1 <= Rs <= T; 1 <= Re <= T),和花费(1 <= Ci <= 1,000)组成。求从起始的城镇Ts (1 <= Ts <= T)到终点的城镇Te(1 <= Te <= T)最小的总费用。
输入格式
* 第一行: 4个由空格隔开的整数: T, C, Ts, Te
* 第2到第C+1行: 第i+1行描述第i条道路。有3个由空格隔开的整数: Rs, Re和Ci
输出格式
* 第一行: 一个单独的整数表示Ts到Te的最短路的长度。(不是费用麼?怎麼突然变直白了
——译者注)数据保证至少存在一条道路。
测试样例1
输入
7 11 5 4
2 4 2
1 4 3
7 2 2
3 4 3
5 7 5
7 3 3
6 1 1
6 3 4
2 4 3
5 6 3
7 2 1
输出
7
备注
5->6->1->4 (3 + 1 + 3)
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#define INF 0x3f3f3f3f
using namespace std;
struct edge{
int to,cost;
};
struct city{
int num,dist;
};
struct cmp{
bool operator ()(city a,city b){
return a.dist > b.dist;//最小值优先
}
};
vector<edge> G[];//G[i]属于vector类型 存城市i所有的边
priority_queue<city,vector<city>,cmp> que;//存城市 int d[],C,T,rs,rt; void init_(){
scanf("%d%d%d%d",&T,&C,&rs,&rt);//城市T 道路C 源点rs 汇点rt
for(int i = ;i <= C;i++){
int a,b,c;
scanf("%d%d%d",&a,&b,&c); edge x;
x.to = b;
x.cost = c; G[a].push_back(x);//存边 x.to = a; G[b].push_back(x);
}
fill(d,d + T + ,INF);
} void dijkstra(int s){
d[s] = ;
city x;x.dist = ;x.num = s;
que.push(x); while(!que.empty()){//如果还有城市
x = que.top();que.pop();
int v = x.num; if(d[v]<x.dist) continue;//这句话不写也可以,不是很懂什么意思,不写还快了30ms,QAQ? for(int i = ;i < G[v].size();++i){
edge e = G[v][i];
if(d[e.to] > d[v] + e.cost){
d[e.to] = d[v] + e.cost; city c1;c1.dist = d[e.to];c1.num = e.to; que.push(c1);
}
}
}
} int main(){
// freopen("01.txt","r",stdin);
init_();
dijkstra(rs);
printf("%d\n",d[rt]);
return ;
}以上由《挑战程序设计竞赛》P102 的代码改编(略长)
以下是hzwer黄学长的代码:http://hzwer.com/8162.html
#include<cmath>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#define pa pair<int,int>
#define inf 1000000000
#define ll long long
using namespace std;
int T,C,Ts,Te;
int dis[];
bool vis[];
vector<int>e[],c[];
priority_queue<pa,vector<pa>,greater<pa> >q;
void dijkstra()
{
memset(dis,/,sizeof(dis));
q.push(make_pair(,Ts));dis[Ts]=;
while(!q.empty())
{
int now=q.top().second;q.pop();
if(vis[now])continue;vis[now]=;
for(int i=;i<e[now].size();i++)
if(dis[now]+c[now][i]<dis[e[now][i]])
{
dis[e[now][i]]=dis[now]+c[now][i];
q.push(make_pair(dis[e[now][i]],e[now][i]));
}
}
}
int main()
{
scanf("%d%d%d%d",&T,&C,&Ts,&Te);
for(int i=;i<=C;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
e[u].push_back(v);
e[v].push_back(u);
c[u].push_back(w);
c[v].push_back(w);
}
dijkstra();
printf("%d\n",dis[Te]);
return ;
}黄学长原话:
求Ts到Te的最短路,随便选种算法写都可以
这里给出的是堆优化的dijkstra
TYVJ P1031 热浪 Label:dijkstra 最短路的更多相关文章
- [TYVJ] P1031 热浪
热浪 背景 Background USACO OCT09 9TH 描述 Description 德克萨斯纯朴的民眾们这个夏天正在遭受巨大的热浪!!!他们的德克萨斯长角牛吃起来不错,可是他们并不是很 ...
- cogs 826. [Tyvj Feb11] GF打dota 次短路详细原创讲解! dijkstra
826. [Tyvj Feb11] GF打dota ★★☆ 输入文件:dota.in 输出文件:dota.out 简单对比时间限制:1 s 内存限制:128 MB 众所周知,GF同学喜 ...
- Dijkstra最短路算法
Dijkstra最短路算法 --转自啊哈磊[坐在马桶上看算法]算法7:Dijkstra最短路算法 上节我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最 ...
- dijkstra(最短路)和Prim(最小生成树)下的堆优化
dijkstra(最短路)和Prim(最小生成树)下的堆优化 最小堆: down(i)[向下调整]:从第k层的点i开始向下操作,第k层的点与第k+1层的点(如果有)进行值大小的判断,如果父节点的值大于 ...
- 【坐在马桶上看算法】算法7:Dijkstra最短路算法
上周我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最短路”.本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径 ...
- tyvj 1031 热浪 最短路
热浪 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://tyvj.cn/p/1031 Description 德克萨斯纯朴的民眾们这个夏天正在遭受 ...
- Dijkstra TYVJ 1031热浪 Dijkstra测试数据
测试用邻接表写得Dijkstra 代码写得很烂. 描述 德克萨斯纯朴的民眾们这个夏天正在遭受巨大的热浪!!!他们的德克萨斯长角牛吃起来不错,可是他们并不是很擅长生產富含奶油的乳製品.Farmer Jo ...
- 洛谷 P1529 回家 Bessie Come Home Label:Dijkstra最短路 && 乱搞
题目描述 现在是晚餐时间,而母牛们在外面分散的牧场中. 农民约翰按响了电铃,所以她们开始向谷仓走去. 你的工作是要指出哪只母牛会最先到达谷仓(在给出的测试数据中,总会有且只有一只最快的母牛). 在挤奶 ...
- dijkstra 最短路算法
最朴素的做法o(V*V/2+2E)~O(V^2)#include<iostream>using namespace std;#include<vector>#include&l ...
随机推荐
- Python 命令详解
1. 新建一个 django-project django-admin.py startproject project-name 一个 project 一般为一个项目 2. 新建 app python ...
- Firefox上Web开发工具库一览
Firefox的目标之一就是尽可能地使web开发者的生活更简单高效,并通过提供工具和具有很强扩展性的浏览器使人们创造出神奇的东西.使web开发者使用Firefox的时候,浏览器可以提供大量开发工具和选 ...
- github student pack中的digital ocean可以使用银联卡支付
申请了 github student pack却因为一直没有visita信用卡,而无法使用digital ocean的 $50,一直到今天,用中国银行借记卡成功支付. 方法是: (1)注册paypal ...
- 当年的文曲星cc800
你还记得当年的cc800吗?还记得黄金英雄传说吗?还记得用cc800编程的日子吗... 今天突然想起了我的cc800,好怀念那段爬在家里的阳台的木架子上,挠着头,编程序的日子...可惜,当时比较穷,没 ...
- UBUNTU中如何获得root权限
在终端中输入: sudo passwd root Enter new UNIX password: (在这输入你的密码) Retype new UNIX password: (确定你输入的密码) pa ...
- sqlserver临时启用和关闭约束
select 'ALTER TABLE [' + b.name + '] NOCHECK CONSTRAINT ' + a.name +';' as 禁用约束 from sysobje ...
- linux中断申请之request_threaded_irq
转自:http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=21977330&id=3755609 在linux里,中断处理分 ...
- Java Hour 61 基础概念拾遗
循环遍历器 for (Iterator iter = list.iterator(); iter.hasNext();) { int i = ((Integer) iter.next()).intVa ...
- sybase ASE 12.5版本下载地址
为便于广大爱好者方便 学习Sybase ASE数据库,我将windows平台下的(32位)Sybase ASE放到下面的位置: ASE 12.5: (8个包) http://download.csdn ...
- hdu 1806 rmq
找到一个区间内出现最多的数的次数 10 3 //10个数字三次询问 -1 -1 1 1 1 1 3 10 10 10 2 3 1 10 5 10 0 143 #include<cstdio> ...