背景

USACO OCT09 9TH

描述

德克萨斯纯朴的民眾们这个夏天正在遭受巨大的热浪!!!他们的德克萨斯长角牛吃起来不错,可是他们并不是很擅长生產富含奶油的乳製品。Farmer John此时以先天下之忧而忧,后天下之乐而乐的精神,身先士卒地承担起向德克萨斯运送大量的营养冰凉的牛奶的重任,以减轻德克萨斯人忍受酷暑的痛苦。

FJ已经研究过可以把牛奶从威斯康星运送到德克萨斯州的路线。这些路线包括起始点和终点先一共经过T (1 <= T <= 2,500)个城镇,方便地标号為1到T。除了起点和终点外地每个城镇由两条双向道路连向至少两个其它地城镇。每条道路有一个通过费用(包括油费,过路费等等)。考虑这个有7个城镇的地图。城镇5是奶源,城镇4是终点(括号内的数字是道路的通过费用)。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAc4AAAGfCAIAAABZVqW1AAAgAElEQVR4Ae2dO3IcudZuizd6KGIbHRoBNQLxd9pqVx5lis6ZwfF+hzJFT25b7RxyBKR7nY5jNBlxh8K7q0CCWVn5QOK5Aaw0yHwA+7E28BUq63X28H//344NAhCAAARSEvg/KY1jGwIQgAAE9gTOXl5eIAEBCEAAAkkJsKpNihfjEIAABPYEkFrGAQQgAIHkBJDa5IhxAAEIQACpZQxAAAIQSE4AqU2OGAcQgAAEkFrGAAQgAIHkBJDa5IhxAAEIQACpZQxAAAIQSE4AqU2OGAcQgAAEkFrGAAQgAIHkBJDa5IhxAAEIQACpZQxAAAIQSE4AqU2OGAcQgAAEkFrGAAQgAIHkBH5J7gEHPRE4OztzSZev7nShRJuWCCC1LVWzQC4jbXXUUL9eBdLDJQQiEeCrwSOB7M+MkUtHbV3GY5U3irVlX1yFQBECSG0R7BU7TSqLSY1XDJ3Q6yeA1NZfw1wZRFzGroac09dqMDSAQDgBpDacYRcWRPvyP7tHcLsYW30kWWD+9AG2nSyL650JQIDm1/p2qkgmpQkgtaUroNh/cZEdsZF4UNsREw5rIcDYraVSuePUqWva1D93VfBXLQGkttrSpQxcp87ajBFci4KdWgggtbVUKl+cynXWgqglThswOz0TQGp7rv5E7nXpF8vbiRJySiUBpFZlWQoFVZfOWkiVhm3jZ6cHAkhtD1V2yrFqwWJ561RjGpUjgNSWY6/Jc9U6a0G2kYVNh52WCCC1LVXTM5eWFIrlrecgoFtiAkhtYsDqzbeksxZ2k0nZ7NipkQC/wlBj1aLF3KokyYfKzPI2GikMQSCMAKvaMH41925VZ21NjNryWV4LhJ2CBJDagvBLum5eZy3cfjK1KbOjkAA3EBQWJXlIXakPNxOSjyccOBBAah0g0aRyAqht5QVsIXyktoUqbsqhqyWtJYPaWhTsFCGA1BbBXsxpnzprcKO2xYYdjnc7XhbraBT0rLO2zAJB9kV27Rl2IJCBAKvaDJBxoYiAiKxsRnAVhUUorRNgVdt6hd/yy7aknVMxEbi3WFT8zwZERbYEUZoAUlu6Aln8Z5AVq7BzkmoazF3NgmHsJAOWsUuOeyXwS6+Jk3c0Ao4aakTWsXG04BYNSUio7SIhLkYjwKo2Gkq1hpKqiZ9xv16JCKsKJlGOmC1OgJfFipeg1gBEobxFyiwnpbuG5E0wy5E8f/8k0X76/rzcjKsQmCPADYQ5Mo2c91bD5fzDzdr7CWZn2V3qq0ZtJyO5/3p2eZvaP/bbJ8CqtuUahwtiy3SOczNqe3xuf/T5h1yR7e7q9BpnIOBMAKl1RkXDNwIRFVw0TKy9GS78X1UwhVngPjYBpDY2UTX2IgriMKfoZlUJnKpghtjZr50AUlt7BYk/MgHUNjJQzB0IILVtDoToa0+DKZFZbeqmLZ42x2hnWSG1nRWcdN0IoLZunGjlSgCpdSVVUbtEa8+KCEQJFbWNghEjhgBSy0hwJZBUwXXqms6oXAtGO00EkFpN1YgRS1JBjBFgZTaebi4E6dnhcwyP1+eH/a/3lSVBuOUJILXla9BMBE1+evXDtwdZ20qN5O/b9uNzMzUjkVwE+GBuLtJZ/MiaS+Qgi6sjJ81/elWolmJ7BJqDagmwqq22dJoC7+HTq0ZtNVEnlpoIILU1VWs5VpZdy3zCr6K24Qy7tYDUdlt6EocABPIRQGrzsU7qqfYlbS3xs7BNOowbNo7UNlzcyKmhMgYoHCIPrD7MIbUt1LmWJWELrA85oLbNlDJbIkhtNtQtOEokMTU+VCRC0cIoIYcpAkjtFJWqztWoU1UBng0WtZ1Fw4UTAmXe8X4SBif8CeSX2lOP8jmx8+vH4xyu7l6cPlV1au3Yjvaj2uPXzreV+JDa6itZZKrHchrLTtkqtpFFWYbNe+cGQt0lZpLXXT+i74YAUttNqaMmam5TitB7W5W+sokdbwt6OnLTVk8t1EbSyFhXyzdpYBqkyi8Gv15JYYYbbzKpcCxYMARY1TISgghsXd6KHskW5FJrZ9a2WiujIi5WtSrK4BGECJaqZ99WQCejGl3VFrwH/7kuDac2lzLnXQjwfbUulGjjRMCIrFXVYZ+R/sphq5LUcGrDgrK/lQBSu5UY7ScIDHVzpKoTrTkFgf4IcK+2ypoPpa3KBJoO2ixsm06R5DYTQGo3I6MDBFYJoLariHprgNT2VnEt+TYvRs0nqGUkVRIHUltJoQZhart7oC2eAarCu6ht4QJoco/UaqoGsUAAAo0SQGorKyxLyLoKxsK2rnqlixapTccWyysEOpGhTtJcKXb3l5Ha7odAGABW2S78UFsXSm23QWprqi+6VlO1iBUCAwJI7QAGuxBIRoCFbTK0dRhGauuoU6tRdiVAXSXb6oj1zgup9UaXu6PCuwcKQ8pdlY3+UNuNwNppjtS2U0sygQAE1BJAatWWhsDaJMDCts26rmWF1K4R0nG94afqHUpPhynrmEYlo0BqS9Kv2nfD6p+hLqhtBsiqXCC1qspBMBCAQJsEkNoK6sr6sYIibQ+Rhe12ZhX3QGorLl4zoXcrOt0m3szQdU8EqXVnRct3Aiy031mE7aG2Yfyq6Y3Uai8Voqa9QsQHAQcCSK0DJJpAICUBFrYp6WqxjdRqqUTncXQuN52n38PgR2pVV1nn3QOdUakupENwqK0DpIqbILUVF4/QIQCBWgggtbVUijjbJ8DCtuEaI7UNF7ey1BAaKRgQKhu1zuEitc6osjfUeUtUZ1TZi4NDCGwjgNRu40VrCKQmwMI2NeEi9pHaIthxCoElAqjtEp06r/1SZ9gVRC1PtCejlFk0eX50ss/n6UZiHBGNiBU8DKz1ZOSVopjMhZNCAKmNPwzMxJvTi+Wr8aOJarHPB4A5hFZhm6z1XNac9yOA1Ppxm+7lIqNmWrq0nPbBWQUEHMsXWGvpLo7mdFwBBkLYQACp3QBruemmWWEnIRNpmarCq5sKLfGH1Fr6bnWnkBghCQFeFoszDPzmg5lIpxH4WTu1E/dMnqjmmMTNxc+aEPCGYPKS7n6u6VU7AaQ2QgW9p5/41qwsEdA0ZMJUWerlnZP0lW2r2np08Y6QjukIILWhbEN01vhmLoXWoFT/+69S/eH29T5JKIyQJFjzGkVqg3jLNJNpEGTi0Hk4l2LZDI8KC5bAfFEubp6keq/bj8+2x+yONBVrs5e50CgBpDZyYZ+/f5KJ9LolWuREDtnJnGQkGuHUNLiRNjGKnrtHgh5dguuAgZgEkFp/mqczUJ5Qftn9lFlx2O6ubi/PnNVWuohB/2jo2ToBRkjVFUZqY5bv84+Xh28f3ix+/tfNxe72rzS3796c8D8xgdMH1GOHj9fn0mS/OT+q7g346aZfr+OAOSpDAKn15C5TS8b9eueL387XG723cDX73oO9cgTkofVte7q52PIcplzMeC5EAKlNB/75P38+7j7+ale5q56ctHvVSoIG+R8ABIU4TZBKKpMfvj3cXe1u//39OZWHV7vVkUnMoxrzSG2qUt1/Pb9+vLpzeU06VQjYDSWw6THm/LeLTf68RdO746bwaByXAFIbl+erNXkfwuWtvA0IoU2CV6fRp/9uexKjMwuiSkQAqY0PVnT2/Hp38zR4hSy+EyyWJ3D/9ZO9X/D64PovhzfWxgichW0MilltuL22kzWkOpzNPbWU93td3l7dvXiuZ+fMFoRSMKSCrg3wtQAO1X6tjU/R1+yvlD2w+4p1LkclgNR64pwc5YE6K6FMmvUMMVK3giEVdG3gpQ4g0H5g90gDBDNOBLiB4ITJqdHz93/fSkN5z89ge3+KuW6DmbPOiBYDAtxGGMDQvsuq1qdCRhOjK2N0gz65nfQpGFVB1wZD6gCi2I9i5KTsnIhMgFXtZqBJR7YY3xxQyg5Jk10NvO1VW1m2q/BpEJcAUruN53B6xBUCY9nYlP1tYdE6DYG4JU4To+dnfBMFg9k5AkjtHJmJ80Odnbgc6ZRMbzPDEdxIRNs3YwZM+3nWnCFS61q9SZ2NNcRPje/l9vDhVLkkm2uUtItNwFQhttX9W02i28SgZgJIbWh1wqeizDoxMhmHnDfbXm6zT07xKN4nA8t2UgLIn3ie7OKmFtdaHgJdeUFqncq9LDoho3zZsg1OXBgvreqOzVThjiEfMTBb9LiW41qLmC+mhABSuz4M7MRYaOo3yl0sD52KF+MIwR1iybBvsEdxtLXoUZxipDiBX4pHoDwA94lhZ6PsrCZltNKl5akp08uqrZ+RU7OcKUJAyuc+xlYjjGtt1R0N3AmUvxnnHmv+ln5z4FQErZ3TS+FJGZvRBdfGHB5huAUlwQSiXugeN8G41sLLhwUhwA2E2WHgPV5F9cwmFswmPszO25X1Ze9sWCcXhr5OLrZ2wvxK5pZPO8ckYFF7GJUBYLpP9pVL0mDyEifbIMANhOk6mokxfc35rMwf0zaKtWW3xpedrtb1cq+Krg6/RKts2FYWHSGbopheC11WG7hnHdGUu1NaLhNgVTvBJ4MyTniNcUrmmNkkBdlimNRi4+13vORnZcpvQ8hznA8V2P8xjV2ClpZz1ly600YzAVa1mqvjH5tMWuls5q3Z32TLCMSmLkkbGw3ySCR1VMb+pD6WjVYnsaTlUG4cqR0XSJvKjOPbcmxmu7fgbnHVdduIqhpRIiOa6rq6kZJHao9AtqSzNrGh4MrJiLpgXbCzSsB9aCGRqzBrbMC92vequU+G9z717MkENpukKVs9gfcYqVQqSo1i2emxBrFzRmpficrIlnEZG69Ge6uC2w8KjeV5iymWSsay8xYX/z0JILV7cB2Ky1BwoyygPAegczckwxkVDTUSQGp71Fk7Eo3gGhWrQnBt5D3sxHp0iWWnB+bpcuxdajtcz04OJqO5QkO2yQbFT8rnxCSGM/np993u8fr8EOnX++JhJQ4glkrGspM43ZbN93KDcq6GMmNlFM5djXU+j5co0Q6lNgOZTTFXhHGUV2Dkgd1NMFGMjPLi0J1A16taBt/kQBGFNZvwkW2yTZGTEpWqeLJBiJJ4FCPZUm7PUb9SK5NWBl97FY2YkfCRbS+3mgQ3YoIVmTKFqChgQh0R6FRqRTtk7I5YcDiJZS+3CG4Tg8PUsYlU6kuiR6mdFJT6Spc34oPevq5wWeTmZf/qLYpQRjFSJP3anXYntehsyJA1gmumaxHB7VwpJtKXL5c83tp/W0bICC7Xty+pRWdjjTSjuWaOx7KJHRcCE2q7u7h5MgXZ//3xecXMlIWVLlwOJ9CR1KKzy8PFg4+Z30Zw5e+y/W6veoBdZhWuleEWliPk6ikBvtnrlAlnthGQeWs6GLW1h9us0HoLAaOVoN7CrHDbXla10VcWheum0r3MfNkEtWzpAjQu0tmv0PLbp+fOztxv1IIxc6G7WNXKzJeBlZlst+4MaqO2YE83DIxWyl+5PWu8yGeXzy/Pdnfrt2vTRYXlOQLta5AGndUQw9wIMOcTRWgEV1yIHiwHsOlqomg3xeDeOGm0I+P7H7v8++bp4dsHt/hG3d060cqHQOM3EBhJPoMiXp/Dmmv/RwohWzzDWHolYNhaHOe/Xdh9l51Rd5cutPEj0LLUytyWkeTHhV5xCUghZDvobQTBNabiRpjIWoZBOKTx9N/H3cdfHZe0iVLG7CSBLu7VTmbOyfwERBTEqV3emsP8YbTk8f7rp3/+9WAyknu1l7fyHtu1N9Ye52+UmlocU4l/1Oy6L8Nqwr0aqoI5DbtUeEZz/SZ5qZhP6S2fSR/n/vasfIfvYbvyfkksfZzLnNq/2uYNBMZNFSNXRFY2KZZsVQTsEuTgg7Kfvj+79Ahs8/mH4bh/xnC7bUEb6JnuWwg0KLUyb2XsbYFA25IEjFAc9HaD5hqNLhn3lG95Cv/X76/K93Szuz7f/3JEti2ESUjfbAlW7ag1VdKpszqjsgNXVXgSjAQmM9+GN7ejKuyJIPdvc71+dMtlorvvKW8s3h19I+2rX1OrWsaKx+DVBs2sCSUq2TzSoYv3+tS7I8xdCLQjtTIzXZZCLlBoU5xA/YL7/P1LgSVtYOFQ20CAC93bkdqFJLlUKYGh4J4ucj10QZ7T71fLZnP/voAN+KyH8z//eNrQL2pTDzJR/WNsgkAjUitzR4bXRH6cqp+AEVwjH1Jo74TkvQFfdj/frN1d3V5u+HYWV68fvj28evi5+yKdkui5QzAGl0PDcRPvjmNDHB8TaEGh9Ous2gjVBnY8So+OjNqKIsjZkPgPr1p99H4j6lFMMwf7UP3f6jpjdMtpPz5+vbbE1WPb6le1DIvehq1ZNErdZQvN/eK381ATqvv7LVH9eqkGoSC4uqVWJptZ3SggSQhZCRjBNaLgpbnP//kz+tcFyC2K9xsGsmoWIle/V/mpAtQ2+miuWKoq0lm1oaoNzH2gmxTkr3Rxf9w9fJo1wXP7w10JeS/tYbuSj2+5h/TaKcE/vyr79UoQfiMmkdochdQ5anVGtbUewyxkX7qvqttBD3cbvtV1a0yH9sPAvAzE7OQXjF+vmHE3ZKvWb/ZiEDQ0CKOlYkRWxoaxOKm5eXQ2WkqRDAkKpkwklp5mqrxXy6DxrHaL3YyIDDOTM2aTcSLb8JLcNzi/lncdOP9KwbBz5fvCZERjNSGPLqs2u21Qn9TKcJER0G3BSNydwEhwU92fdQ+odEsP6fToUjpLpf4rk61KdVZh2ApD8p4iLrlImwn78j3ayRa4LlFNhJT4lEdUHl0SJ1Gl+Vrv1VYJm6DLEbDPhIzm2sNyEZXxbFapm9L36FImN91ea7qBwKOr7rFULDqjBY7upbFpbzTXsdfWZprHqkl/a0a0DyRQjdRqHruBNaB7fgIHvX39AYikmps/NRePW9V2a3uXGHprU4fUorNxxyU8DU8juEZHehPcreq5tX3cEduANe7VNlBEUgglIDoiJozamv1Qi/SHwDGBCla1LMGOS7Z+JO9qetvy/JLgekipW0RZc4kRY8dobuqYi9s3ybqHsbW9u+UeWmqXWnR26yiUT0ONfklw9LutIF1Gupfbt9/xbV5zTabLQLgahYDq99U2IwrFEjl8CnX0nazFgokyYOeNJMpLzIpPkaR5zxNXEgUz4SnGqU3RbmocI7pGbOhd1VLRRoZY5Wnsl7hvi1zHVKobuiZBx+xo5kdA76q2uvG6UIBCuUytacN+uWAhRw2XUnMW+yZN0aaFfFOHseA65JJ72O4tQ+JprK/SVS21DBhnorDCT7b9Lwm+/Dj6amo5uywTAX7b7yrozHbAO/VJ3/YZ7DMUCEKgj1yjZalRapGDsPIe/ZKgwHz/YYAwu/S2BJoUXATU1jfFjro1TpM6WzCp/ddZ7d5/q7BgJCmG78hmkezEqYQhOmWDKRKG9R644x68e8vAkNrornFV2wZZsshPoMi6bLjCNbKbP/GIHoswjBi/WlO6pJbHyeCBIqvY9xsGctf28vb9lwTBG4x31oAR3DZ0yjELx2azyDq7oOiDuQhBjLH3+cfTP/Kq2OWrLfmlwoej18Vi+MDGMgGrQbKz3FLtVZPCavyOzdSmmTMwRfdqG5ZaJakpCSPp+C6e4zAA2TfJrmpWUiZ+xoeJLFhwbLZgoZNLWm4gULBOBlzqNM06K7UXR/sSjNlkeMvm2EtJM4ncJWbHZkqSKhiGCqmVikrBClLowTWQC1a5UsFFRiOOGRVSGzEfTEFALYEaBddFbV3aqC1KtsDKvyzGaitbsXGkgYAIk4Rhn5ubQw2BzcVglFR/nHPxKzlfeFWLzioZBy2FYaShSEbu41mCNJt0ka1ItBGdSi4NZBERyKmpwlJ7GhBnUhCQaSCTIYVlbAYSqEJwXZTUpU0gq6q7l7yBwPyveugQfEQC5oHQLgzNYUT74aaMkioMLDy1PBaKrWrR2TwFxktFBETIzCazQzZtkUtsy1GtNtCWUc54ikltziTx1RuB2ue8WsGtHWzBiVBGauWxUWpWMO2uXEO70nIPBXd5OZkzwWW1Xb6aM05tvkreq9XGgnggEEIg0UOaXZQYtbWHIaHSNz+BAqvaRCMyPzs8QiAnARFZ2WT6yJbT76kvE8bpeXNm+epcr+bPJ5Fa+SK/t+0Tv4zd/BjSmWCrE17yMqmVFVwTw1zpl6/O9Wr7fHyple9I/ev3/WiQ7elmd30+Vtu2gWrLTiakFEJbVMQTSOAwvV5XuKU0V2Io5TqQXpHuiefh8W+2djvtCyZe0HWRAT10mjn3zO5GmcphkcfUhawXLg2D72Sfl8U6KTRptkzAiKxImyRZRHBbhhspt6Sr2qM1bc8PcQVzL+g60hD1N5M598zu5rhIGOZSNs1dSHzh0lz8rZ6Pf692txOFFcKynf/5x9PLj45+b8Vmvs/+/Se+ig0eiSLbfCuW5LxjyV0IzF+PeUUPasnabBKSbDGTnLEl7vI4mvFfx+kUUvvh28NrsX/uvkgNRHPkr5yqA4lvlPK+iy+7n6+Zv9xd3V5qUFvfbOhXPQEzFGXqyZY6GfE16WXufOp4FNpProAiQJe7u93tpUBXmH+6kIZ3T2QUFkm/lN90VLdazkYgm6OtBEx7CU92Ug/CSQiTJ/2yqLpXilXtCZD+dPYVwcVv5ycwOAGB/AREZGUT1TNbogCMi5HxyZOjNj0cRpdaWcW+36SUld3lbQ8YT3N8/s+fj7uPv344vZLrjEwqGeW5vCn1wzwfFkZomC2p4A49mn1xKh5Pz3d1JvqbvT7/ePpHXhW7fKV4tds9CuiumEqy91/Prx+v7h46ekmwtxJXna+Zkkb+4k5Po6pxbVaN2gaffOHT4drqcJd2d/P08O1tTVsEQhGndmDp2cnAIYOLdDwleGM8oj5OApk8mS4vbZajr2qPEuwQ7qnOHhHJddAh+VxoW/NjFVbGjORmD0PyFCOMwBHA6PdqR/b7OpQb1efXH+9e3tezfeWvMlsz7VWGpisoAWVYGc0NDM6YGho5PTO82vx+2lVt8/iGCe7f1nZ7ddfVZzaG+bPfBAERRMnDqq059MvMaGuIBT+/OnslXNX29Qzi+fu/9++1kM8tDDa+1EznqCeqNQKij2Yzo3mtuet1sSkGXVu31S7hy2LCVMi2hcszm8woMrvzhJKxW2ogqe1nRDXtShKUC37TeQRndDjtr8WzCVe1LeIipyoJ9LyYilIwAWgYGs3dZNN0tF1Gh/Z88zuppLbbx67mRwwJjgj0M9T3cuv1kTPTy3IbHdrzbe/wsljb9SU7CEQmIEJpLJoVrj1cdmPk1bHxsqlKr6Za1VaKo4Gw+1lkNVCsqlMQ3ZRNxptsWxMxHbf2qro9Ult1+QjelUCHc9sVTVi7vdy+Ce6y5ppmYd4q7p1EaoW4YK2YCqFDAAJbCOzl9rDtl7jzi1xpYq8O97e4qrUt92prrRxxQ0AhARFQicroqdkfBWkUdvKSbWnl2J6RneUuw5Y695FanXXxjErGaO0j0jPzQt0APgneDMI5wZWrhpvdMUZMe9mfHMPLVyfDUHUSqVVVDoJJSGA0sRN6wvSBgFHMSYkc1cK0mVRYy9JedWlse+nZQWr11IJIINAggWWJHGmuS/7GoAiutezSq3ib+FJbHYLiNSAACPRAwEqkJCv7soWsT013+VsLuvhSW0vm7cXJg1x7NW0vIyOORmQDs6tLbZO82SuQIN0hkIiAmZyJjGPWnYARXPlrdtw7jlpK9yiqPTKb4hCpTUEVmxCAwBKBiM/AalHbLm4gzD3uBT6iLg0lrnVAIKJedECr9xRbllqrsHOSutqgotHBtK+oWJ2HGn2smoXt3DRXQrvNGwhSS1NOob9QAHNV/pr2SkpCGEkJmHIndYFxfwLys1ETWws/ZxL/vWlG4/xZB/f0DsC742rI6Sxb1xlcWF+178RiFctO7Ty3xr+J2/4n+3brv9i3yebWgKO0b21VG0Kc9U6UIYURCCwQ2DZDDz/Zd/X75wWD5pL+ydvUvdptVZyqnimY/J26qPdceOJ6cyOyjgk8/+fPx4ubn+tKWwGjdla1seRG/8NjBcNKd4iUWHd9bHT3/3v9ePHH/3ywJ2reaeRebSydtaWMazCuNRuk3Ult3zpqZiecWLiFZmBuSsSd2/P3T+fXH9dv0765d7f81iPr/xZuIChHnLWeOINAIwRaunmwL0k7NxDiDrCKnmNW9EgzeCdPC2/fiTvk6rImo85vkzSl43qyTd082Kcbf1VrREr+rtOM0ULKlshX5kRiwFBtQ54P/vX7y8uPfZD754bnn3ZPD98K3YdrprhOspVgXHhPOrcJa955cFdqeCQAtkuiU24046ST1Fcs47HsTCJLanzSY4STW+/DRXA5NhHIbdhd9sfWcx17S16uACf8DNFNXJZT24fHus1pT/nOxl/V5osdTxA4JrBV8ra2P/b2/kS4Rr0b5aLq8HDzoJH3eFmwda9qkz6UGeNRXEQxYms23Elneehl076EtKl9xMabJC8EXUjfiPlWaioFvRQ24+Jt8GUxXnuRISIjr9QmejezPd1cvI7ei5unmTZBpzfNDfEkiDZ1oXEUAtHJSx3FZpTY0hlJIrXRUbrn//rai0Tw8vJ0s7s+L/xKt9E7iT+R8M1ZPgAo82e+WB++PbyG9HP3RYB8vZ9vyxUItEUg1aNBnseZFS/bb66Piiv2R2e2Hoq0SJeVOLcafWufyOyb+bT/Hb9GJGkQ3gC9OyZNpy7jsRjGspOaHi+LrRM2crnejhYQgIAzAZlW4SoZbsE53tCGSW4gSFCGY2h0Qf2fv3+5fry6+9HEd1UEkVDRWVax7zcM5PnG5e3O5RubksauYJQmzU+78UD+FemsVKK9Ve3hrsHjfpDtX3tp6T3Q2ifOcnyffzz98+lMvnvUbFd3Lw88CC4j6+Gq99q2Lp2VUqa6V7s3nf5lwWUXRnRlTocsbJddOE6GKEZGvlLYHLno4dADo0eXHmPKPKgAAA5ASURBVEiG5ChIpbvIrouRTY1dDOZpU7fUCqPlcR/42kusoi4H6VfpFDb9Iqm6lwdGjy5VI8oWvIA1viY1d/lqtiC9HSW8geD91MA7mUQdmVqJwGow28wo1QAzMAarsFZVhwbt1eHJivZTvSxWCEGS117MbJTym61QariFQC8EZMadbrUnn3BVK2iEl8iT/E2H6dhFzNdeTOTy1yRiUzBn7GHS7KyX0U5qqiN3HEIAAoEE0uqgBJdBFBK5sGbtziRruTo8P6m8yxaG3R33oxt09Ntks60wt7ZvEhpJbSWQdlUr0RyvOreG59Q+hQv36TTSVulogx5dsufZUUVg0/hxHxiqciSY4gSSS22eDDfNltWQQqbTUF6HshticzVgGkAAAsoJNCK1QjmW2kbURCu7xuZQee0lj/ERMUIP73SBAAQ8COSQ2lgiuJpeuKNJFQs3ayIfyutQduXq8NJqmjSAAASqI5BDanNCMbIoHj3Ea1JnEwU/Cg/lTcTZ0awZNqOiOPalGQRcCGSS2pxD2UyYTbpplK7gTBu5Hirv6JJLUWkDAQhoI5BJaiVtkYxN8hdIyrgzRubUyiraXIPAGLy7D+OxQVprw6v2JDsQgIBmAvmkNj8FK0mnamWCsQ3yx+bucRSk5GLTGV1yt0lLPwJCHuZ+6OiVVWplmBYZrOHTo1TkkwPUpmM11zSz5yd7cXKZgKoSL4fK1RoJZJXaGgFpjnmkrSiv5mIRW+cEcksta4eQAbf8nGBBeUeXQmKgLwQg4EEgt9R6hEgXPwJDeWXB68eQXhCIRaCA1Fa6sK00bDNQhrIrZ1DeyflTdYknM+KkHgIFpFaSZ0yXHQELyju6VDZOVd6X796oCpVgFBIoI7UKQegPKd1UH8orC94RAf0DgwirIFBMalnY6hwfQ9mVCIe6M7qkM36/qGyaCzlKG9NsoY2fd3r1QKCY1ApcGbIydhm4msfZsDpGaGy0w0v2ZHU7m9TTpLypS3VACDgRgZJSmyildGZlpvX82DDS1tqVd6ti2vQR3HRTrGHLhX/G0YhXw3xjpVZa4uX3MWX7ej/IR2o33PbX37ZBK6W7EqkJ3js+013seFugY1cECkutsJYhy3jVPeaev3+6/PviYjnIOdlVWFyjs8vpOF5l9DqColl5qaUGygk8f/9y/fHu5x8bwhzKrhEjUTezbbCSpqmEISFFtI3aRoTZsCkVUstg1TvCjND++BwSodTXbm+SW0Z5o+uswSLZieUQRPRtnoCWl8XMYJW/yokXiTORQDigvv96LivaFxHaZ4fWLk1GJR4p1Oiqi0H3NkkxFhkY7rnTsjgBLVIrIBisxUfDKID7r5e3VwehHV2IdzjS1qHyji4F+kyqsyY2BnBgjdrurkhq2wZdX3YZhPYEylBeh7IrDYeXTvpxAgLaCai4V2shmXWBPSy+Y97iJHP+7OzT91hPoYtn5RbA93/f7na3l4fk5c/59aM5zAZCBsNwewtk/98tg/dW0kVMvR8n2xMvHuElCwfDigjokloBo2ewyluc/vr9dbI/3eyuz19FJnOE2WRiNCq/Pbzmbv493cibveRuwsvDtw+jlnkOh9EIk+GWJwC8QCCEgDqpDUkmbt8P3x7sC+8f/uePi93jf5/iesCaJ4Gh7Mr+UHZlf2RUzkib0cl0hyaedPaxXCkBjVLLYK10MJUKWwbMcBsq70pIgztExx+FW+nHZQhsJZD1AX9TcJkXI4uxyb2Ew5ue3la5W2Pb2t4G493RWuh8RwAaAqLFIxQis4c3WLwVdXQ54JCqBcBrtqvGVa2BLXPDzpNC+EVhJQTZzv/84+kl/pQslFZnbs2Cd5z06/srkhRVwdAdp8txcQJ6pVbQlB6ycrfWzNOXn7svorj221ZKB1Z82FQfwP1ftxc3/wr6DFz1DEggKwHVUpuVxKIzEd27q93tX8NvtlrswEXVBERpdx9/3b09a+nwvXyqy9NkcNqltuf1o6yjJf0mh52GpG4vv+x+mmctw/fyaQiNGBokoF1qBXkhtZVXTewNg93+awRvd1e/84yziTnw/M/fu93Fzc+3twh/+Pbz5uLx+n950tJEeXUmUccHc43a5l3iff7x9I+8Knb5Wjd59/7DUGhLhKRzCFUY1YdfP0rUv5b5LEaFvAg5AoEKVrUmywJr2/dXxcR5kpeqIxQQEz4Ezn+72P39z+ij1he/nfvYog8EXAjUdDdQ271L93jcW9qaeXSxfdmxBGYxHr2r9ujA9g3ZmfUbYpS+NROo4waCIcxz9ppHmrLYP/94efrt0/nbJxzk/hDPW5SVqLFwalrVGvR61gvukbi3tMPLo4vty86QQH6S+T0O82VfJ4Fq7tVafAVu2lrfxzt6IjmOiyMIQEAdgfqkVhA2r3Esi9RNFAKCQBiBKqVWUm5ebcPKSu93ApmHCg+T7+jZGxCoVWolhcxTaACNXQhAAALbCFQstdsSTdMauU/DNbLVbGViSRu5cg2Zq1tqs02hnBVnuuakjS8I5CFQt9QKoybVNk/tu/KSYZzwGNnViNqabPVSKwlnmEVbsdJeIYGk4wSdVVhxVSG1ILUCNOksUlUwggkhkGicoLMhRemkbyNSK9VKNItWx0Fcv0zaVeCBDeLWS4KhZIEV6aR7O1IrBYs+izoZBL2lGXGcoLO9DR7vfGv6uhnvJOkIgREBq7ayM7rkeCgiKy29uzt6oVkzBFqTWjOFmADNDNB0iZhB4qGYHl3SZYHlWgjU981eLmTzP61b9rh81Wbk2My2ZycWASFvTC08SLu0iRUPdtoj0Nqq1k4YZKu9wZouI6uwVk9Pfdk2p5c4A4FVAm1KraQtEwO1XS0/DUYE0NMREA5jEWjqHQgjKEZtRyc5hAAEIJCfQMtSKzQrUlvW4PlHPx4hkI1A41IrHPOobR4v2YYFjiAAgbgE2pda4YUOxh00WIMABLYS6EJqBQpqu3Vk0B4CEIhIoBepjYgshSlu1Kagik0I6CHQkdSmXtimtq9n0BAJBCCwlUBHUitoUMOt44P2EIBAFAJ9Sa0gU6i23D2IMpQxAgHNBLqTWimGQrXVPESIDQIQCCfQo9QKNdQ2fOhgAQIQcCfQqdQKoBRqm8Kmey1pCQEIqCXQr9RKSTQoIzdq1c4NAoNARAJdS61w1KC2EcuJKQhAQCeB3qVWqoLa6hyaRAWBlgggtftqorYtjWlygYBCAkjta1Fiqe0mO9yoVTglCAkCKQggte9UN6nkezf2IAABCKwRQGrXCHEdAhCAQDABpPYIIQvbIxwcQAACkQggtWOQ4WrraIEbtWP0HEOgXQJI7URtHbVyoienIAABCEwRQGqnqPD2r2kqnIUABDwJILWz4FjbzqLhAgQgsJEAUrsELJ3acqN2iTvXINAcAaR2paR+auvXayUULkMAAtUSQGrXS4durjOiBQQgsEgAqV3E83YRtX0jwX8IQMCHAFLrSi2i2nKj1hU67SDQCgGkdkMlN6ntpsYbgqApBCBQIQGkdlvRENBtvGgNAQgcCCC1mwcCarsZGR0g0D0BpNZnCISoLTdqfYjTBwKVE0BqPQsYoraeLukGAQhUSwCp9S/dqtquNvD3TU8IQKAqAkhtVeUiWAhAoE4CSG1Q3bauW7lRG4SbzhColgBSG1q6rWob6o/+EIBAhQSQ2ghFW1DbhUsRHGMCAhCohABSG6dQSGocjliBQKMEkNpohV1VW27URmONIQjURuBMBKK2mFXHO9JTOZwMF+yTWDgJgVYJILXxKzuU1zlJtW3mGsQPC4sQgEA5Ar+Uc92y51UBtQ1Gq+CWoZAbBDomwKo2ZvHNWtXKqKNpv16OxmkGAQhoIIDURqtC4Po0sHu0NDAEAQgkIMA7EOJADRdKWQub5W2cgLACAQhoIoDURqhGuM6aIFDbCMXABARUEkBqk5bl/qvI8NnX+6ROMA4BCKgngNSGlmh+Sfv8/dPl3xcXmxywsN2Ei8YQqIUAUhtUqXmd3T1//3L98e7nH5vto7abkdEBAuoJILVpSmSE9sfnNNaxCgEIVEaAjzCkKNj913NZ0b6I0D6nMI9NCECgNgJIrX/F5u4e3H+9vL06CK2vbXMPQf76GqAfBCCgiwBSG7se4UIbOyLsQQACxQnwaTH/Ekyuar9/Ort+nLB5cfP08O3DxIWZU5PGZ9pyGgIQ0E4AqfWvkIsayhu+DrdtN79A5mLcP3R6QgACeQnwDoS8vPEGAQh0SQCp7bLsJA0BCOQlwA0Ef95Jn+MnNe6fMz0hAAEvAqxqvbDRCQIQgMAWAkjtFlrHbdN9gpYl7TFpjiBQPQGktvoSkgAEIKCfAFKrv0ZECAEIVE8AqQ0qYYp7CNw9CCoJnSGgkgBSG1qWuGqLzobWg/4QUEkAqVVZFoKCAATaIoDURqhnrIUtS9oIxcAEBFQSQGrjlCVcbdHZOJXACgRUEuDTYjHLInIp5kR2Nxn167XJBY0hAIGyBJDa+Pw3rU83NY4fKxYhAIEsBJDaJJjNQlVMz61wVxskCQujEIBAIQJIbVrwVlJHbuYkeNSMQwhAoA0CSG0bdSQLCEBANQHegaC6PAQHAQi0QQCpbaOOZAEBCKgmgNSqLg/BQQACbRBAatuoI1lAAAKqCSC1qstDcBCAQBsEkNo26kgWEICAagJIreryEBwEINAGAaS2jTqSBQQgoJoAUqu6PAQHAQi0QQCpbaOOZAEBCKgmgNSqLg/BQQACbRBAatuoI1lAAAKqCSC1qstDcBCAQBsEkNo26kgWEICAagJIreryEBwEINAGAaS2jTqSBQQgoJoAUqu6PAQHAQi0QQCpbaOOZAEBCKgmgNSqLg/BQQACbRBAatuoI1lAAAKqCfx/DWe3i8dKGxcAAAAASUVORK5CYII=" alt="" />

经过路线5-6-3-4总共需要花费3 (5->6) + 4 (6->3) + 3 (3->4) = 10的费用。

给定一个地图,包含C (1 <= C <= 6,200)条直接连接2个城镇的道路。每条道路由道路的起点Rs,终点Re (1 <= Rs <= T; 1 <= Re <= T),和花费(1 <= Ci <= 1,000)组成。求从起始的城镇Ts (1 <= Ts <= T)到终点的城镇Te(1 <= Te <= T)最小的总费用。

输入格式

* 第一行: 4个由空格隔开的整数: T, C, Ts, Te

* 第2到第C+1行: 第i+1行描述第i条道路。有3个由空格隔开的整数: Rs, Re和Ci

输出格式

* 第一行: 一个单独的整数表示Ts到Te的最短路的长度。(不是费用麼?怎麼突然变直白了
——译者注)数据保证至少存在一条道路。

测试样例1

输入

7 11 5 4 
2 4 2 
1 4 3 
7 2 2 
3 4 3 
5 7 5 
7 3 3 
6 1 1 
6 3 4 
2 4 3 
5 6 3 
7 2 1

输出

7

备注

5->6->1->4 (3 + 1 + 3)

代码

 #include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#define INF 0x3f3f3f3f
using namespace std;
struct edge{
int to,cost;
};
struct city{
int num,dist;
};
struct cmp{
bool operator ()(city a,city b){
return a.dist > b.dist;//最小值优先
}
};
vector<edge> G[];//G[i]属于vector类型 存城市i所有的边
priority_queue<city,vector<city>,cmp> que;//存城市 int d[],C,T,rs,rt; void init_(){
scanf("%d%d%d%d",&T,&C,&rs,&rt);//城市T 道路C 源点rs 汇点rt
for(int i = ;i <= C;i++){
int a,b,c;
scanf("%d%d%d",&a,&b,&c); edge x;
x.to = b;
x.cost = c; G[a].push_back(x);//存边 x.to = a; G[b].push_back(x);
}
fill(d,d + T + ,INF);
} void dijkstra(int s){
d[s] = ;
city x;x.dist = ;x.num = s;
que.push(x); while(!que.empty()){//如果还有城市
x = que.top();que.pop();
int v = x.num; if(d[v]<x.dist) continue;//这句话不写也可以,不是很懂什么意思,不写还快了30ms,QAQ? for(int i = ;i < G[v].size();++i){
edge e = G[v][i];
if(d[e.to] > d[v] + e.cost){
d[e.to] = d[v] + e.cost; city c1;c1.dist = d[e.to];c1.num = e.to; que.push(c1);
}
}
}
} int main(){
// freopen("01.txt","r",stdin);
init_();
dijkstra(rs);
printf("%d\n",d[rt]);
return ;
}

以上由《挑战程序设计竞赛》P102 的代码改编(略长)

以下是hzwer黄学长的代码:http://hzwer.com/8162.html

 #include<cmath>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#define pa pair<int,int>
#define inf 1000000000
#define ll long long
using namespace std;
int T,C,Ts,Te;
int dis[];
bool vis[];
vector<int>e[],c[];
priority_queue<pa,vector<pa>,greater<pa> >q;
void dijkstra()
{
memset(dis,/,sizeof(dis));
q.push(make_pair(,Ts));dis[Ts]=;
while(!q.empty())
{
int now=q.top().second;q.pop();
if(vis[now])continue;vis[now]=;
for(int i=;i<e[now].size();i++)
if(dis[now]+c[now][i]<dis[e[now][i]])
{
dis[e[now][i]]=dis[now]+c[now][i];
q.push(make_pair(dis[e[now][i]],e[now][i]));
}
}
}
int main()
{
scanf("%d%d%d%d",&T,&C,&Ts,&Te);
for(int i=;i<=C;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
e[u].push_back(v);
e[v].push_back(u);
c[u].push_back(w);
c[v].push_back(w);
}
dijkstra();
printf("%d\n",dis[Te]);
return ;
}

黄学长原话:

求Ts到Te的最短路,随便选种算法写都可以

这里给出的是堆优化的dijkstra

TYVJ P1031 热浪 Label:dijkstra 最短路的更多相关文章

  1. [TYVJ] P1031 热浪

    热浪 背景 Background USACO OCT09 9TH   描述 Description 德克萨斯纯朴的民眾们这个夏天正在遭受巨大的热浪!!!他们的德克萨斯长角牛吃起来不错,可是他们并不是很 ...

  2. cogs 826. [Tyvj Feb11] GF打dota 次短路详细原创讲解! dijkstra

    826. [Tyvj Feb11] GF打dota ★★☆   输入文件:dota.in   输出文件:dota.out   简单对比时间限制:1 s   内存限制:128 MB 众所周知,GF同学喜 ...

  3. Dijkstra最短路算法

    Dijkstra最短路算法 --转自啊哈磊[坐在马桶上看算法]算法7:Dijkstra最短路算法 上节我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最 ...

  4. dijkstra(最短路)和Prim(最小生成树)下的堆优化

    dijkstra(最短路)和Prim(最小生成树)下的堆优化 最小堆: down(i)[向下调整]:从第k层的点i开始向下操作,第k层的点与第k+1层的点(如果有)进行值大小的判断,如果父节点的值大于 ...

  5. 【坐在马桶上看算法】算法7:Dijkstra最短路算法

           上周我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最短路”.本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径 ...

  6. tyvj 1031 热浪 最短路

    热浪 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://tyvj.cn/p/1031 Description 德克萨斯纯朴的民眾们这个夏天正在遭受 ...

  7. Dijkstra TYVJ 1031热浪 Dijkstra测试数据

    测试用邻接表写得Dijkstra 代码写得很烂. 描述 德克萨斯纯朴的民眾们这个夏天正在遭受巨大的热浪!!!他们的德克萨斯长角牛吃起来不错,可是他们并不是很擅长生產富含奶油的乳製品.Farmer Jo ...

  8. 洛谷 P1529 回家 Bessie Come Home Label:Dijkstra最短路 && 乱搞

    题目描述 现在是晚餐时间,而母牛们在外面分散的牧场中. 农民约翰按响了电铃,所以她们开始向谷仓走去. 你的工作是要指出哪只母牛会最先到达谷仓(在给出的测试数据中,总会有且只有一只最快的母牛). 在挤奶 ...

  9. dijkstra 最短路算法

    最朴素的做法o(V*V/2+2E)~O(V^2)#include<iostream>using namespace std;#include<vector>#include&l ...

随机推荐

  1. 三款SDR平台对比:HackRF,bladeRF和USRP

    这篇文章是Taylor Killian今年8月发表在自己的博客上的.他对比了三款平价的SDR平台,认为这三款产品将是未来一年中最受欢迎的SDR平台.我觉得这篇文章很有参考价值,简单翻译一份转过来.原文 ...

  2. 最短路&&最小生成树水题

    训练赛20151122 5:00:00     Overview Problem Status Rank Discuss Current Time: 2015-11-23 17:33:18 Conte ...

  3. Linux系统管理员面试50题

    命令nslookup是做什么的? Nslookup 是一个 监测网络中 DNS 服务器是否能正确实现域名解析的命令行工具. 你如何把CPU占用率最高的进程显示出来? top -c 按照cpu排序 如果 ...

  4. MongoDB 学习笔记(python操作)

    转自: http://blog.csdn.net/daillo/article/details/7030910

  5. Android 中的AsyncTask

    在后台下载图片,下载完成后更新UI是一个很常见的需求.在没有AsyncTask类之前,我们需要写许多thread和Handler的代码去实现这个功能,有了AsyncTask,一切变得简单了.下面摘抄谷 ...

  6. 分页管理的JSTL实现

    userMgr.jsp <%@ page language="java" import="java.util.*" pageEncoding=" ...

  7. [Linux] xargs的- n1参数

    起因在对一堆*.tar.gz文件解压缩时,发现tar xvfz *.tar.gz不管用,一查,原来是tar xvfz *.tar.gz会被shell给拆成tar xvfz a.tar.gz b.tar ...

  8. MVC登录案例

    1.在Controllers文件夹里面新建一个控制器HomeController;2.在默认的Index方法里面添加一个视图,名字跟Controller中的方法名一样叫Index,添加后的视图文件会在 ...

  9. Android自定义实现FlowLayout

    实现FlowLayout 何为FlowLayout,如果对Java的Swing比较熟悉的话一定不会陌生,就是控件根据ViewGroup的宽,自动的往右添加,如果当前行剩余空间不足,则自动添加到下一行. ...

  10. 【转】什麼是 Team Explorer Everywhere 2010 ?TFS 專用的 Eclipse 整合套件的安裝與設定

    前言- 大家都知道 版本管控是一件很重要的事情!而且也知道分別有 VSS , SVN , TFS 等- 多數人都會覺得, .NET 的開發工具要用 VSS . TFS .SVN 而 Java 的 Ec ...