此为详细装13版

转载自:https://vijos.org/discuss/56ff2e7617f3ca063af6a0a3

全文如下,未作修改,仅供围观,不代表个人观点:

你们怎么都在做网络流,不就是一道简单的递推吗   发表于2016-04-02 10:29

而且你们假惺惺的用网络流,过程中还是要用加法,我一个加法都没用。

#include <cstdio>
int m, n, a[32768][32768];
int main()
{
scanf("%d%d", &m, &n);
for (int i = 1; i <= m; ++i) {
a[i][0] = i;
for (int j = 1; j <= n; ++j) {
a[0][j] = j;
a[i][j] = ++a[i - 1][j];
--a[i - 1][j];
}
}
printf("%d\n", a[m][n]);
}

根据加法的性质,0 为加法单元,满足 m + 0 = m, 0 + n = n
然后就是裸推了:i + j = i + (j - 1) + 1

但是这样会超时,而且在 Vijos 上测数组太大了,编译就错误了。所以要进行优化,合并一个状态:
设 F(i) = i + n, 则 F(0) = n, F(i) = F(i - 1) + 1

#include <cstdio>
int m, n, a[32768];
int main()
{
scanf("%d%d", &m, &n);
a[0] = n;
for (int i = 1; i <= m; ++i) {
a[i] = ++a[i - 1];
--a[i - 1];
}
printf("%d\n", a[m]);
}

此时已经可以通过了,然而,本着精益求精的态度,进一步可以用滚动数组优化,变成这样:

#include <cstdio>
int m, n, ans;
int main()
{
scanf("%d%d", &m, &n);
ans = n;
while (m--) ++ans;
printf("%d\n", ans);
}

这是递推做法的最优解了。然而,事实上,还可以用位运算做,才是真正的最优解。
首先,加法分为两个步骤,一个是数字加,一个是进位。
因为单位二进制中 1 + 1 = 0, 1 + 0 = 1, 0 + 0 = 0, 0 + 1 = 1
正好符合异或的性质。
进位的部分则为 a & b。
但是第一位不可能进位,所以整体移动一位,即 (a & b) << 1.
那么 a + b = (a ^ b) + ((a & b) << 1);
出现了加号!可是这是可以递归的,故程序优化如下:

#include <cstdio>
int m, n;
int add(int a, int b)
{
if (a == 0) return b;
if (b == 0) return a;
int s = a ^ b;
int t = (a & b) << 1;
return add(s, t);
}
int main()
{
scanf("%d%d", &m, &n);
printf("%d\n", add(m, n));
}

显然,该程序时间复杂度为 Ø(log max{a, b})
因为这是一个尾递归,所以我们可以通过迭代消除它。

#include <cstdio>
int m, n;
int main()
{
scanf("%d%d", &m, &n);
int u = m & n;
int v = m ^ n;
while (u) {
int s = v;
int t = u << 1;
u = s & t;
v = s ^ t;
}
printf("%d\n", v);
}

即为本题最优解。
在 Vijos 上看不出差距,在洛谷上,位运算解法 2ms 通过,递推的最优解不仅时间很长,还超时了一个点。

不得不说,本题很考察思维,一步一步优化,到达最优。

A+B Problem 详细解答 (转载)的更多相关文章

  1. office web apps安装部署,配置https,负载均衡(七)配置过程中遇到的问题详细解答

    该篇文章,是这个系列文章的最后一篇文章,该篇文章将详细解答owa在安装过程中常见的问题. 如果您没有搭建好office web apps,您可以查看前面的一系列文章,查看具体步骤: office we ...

  2. CF468C Hack it! 超详细解答

    CF468C Hack it! 超详细解答 构造+数学推导 原文极简体验 CF468C Hack it! 题目简化: 令\(f(x)\)表示\(x\)在十进制下各位数字之和 给定一整数\(a\)构造\ ...

  3. 使用Varnish代替Squid做网站缓存加速器的详细解决方案----转载

    [文章作者:张宴 本文版本:v1.2 最后修改:2008.01.02 转载请注明出处:http://blog.s135.com] 我曾经写过一篇文章──<初步试用Squid的替代产品──Varn ...

  4. android4.0蓝牙使能的详细解析 (转载)

    此博客是转载过来的哦... 给自己博客定几个部分: (1)写在前面的话:一些写博客时的废话. (2)内容简介:把文章的主要内容或者核心部分作一个框架性的概括,以方便大家阅读. (3)正文:这个不需要解 ...

  5. Linux各目录及每个目录的详细介绍(转载)

    [常见目录说明] 目录 /bin 存放二进制可执行文件(ls,cat,mkdir等),常用命令一般都在这里. /etc 存放系统管理和配置文件 /home 存放所有用户文件的根目录,是用户主目录的基点 ...

  6. python正则表达式re模块详细介绍--转载

    本模块提供了和Perl里的正则表达式类似的功能,不关是正则表达式本身还是被搜索的字符串,都可以是Unicode字符,这点不用担心,python会处理地和Ascii字符一样漂亮. 正则表达式使用反斜杆( ...

  7. HDU 2072 单词数 详细解答

    题目 单词数 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  8. 【字符编码】Java字符编码详细解答及问题探讨

    一.前言 继上一篇写完字节编码内容后,现在分析在Java中各字符编码的问题,并且由这个问题,也引出了一个更有意思的问题,笔者也还没有找到这个问题的答案.也希望各位园友指点指点. 二.Java字符编码 ...

  9. 对单片机的modbus RTU的详细解释(转载)

    Modbus 一个工业上常用的通讯协议.一种通讯约定.Modbus协议包括RTU.ASCII.TCP.其中MODBUS-RTU最常用,比较简单,在单片机上很容易实现.虽然RTU比较简单,但是看协议资料 ...

随机推荐

  1. C++中new的解说

    new int;//开辟一个存放整数的存储空间,返回一个指向该存储空间的地址(即指针) new int(100);//开辟一个存放整数的空间,并指定该整数的初值为100,返回一个指向该存储空间的地址 ...

  2. Linux init进程详解

    init模块 一般来说,Linux程序只能用另一个Linux程序启动.例如,登录Linux终端程序Mingetty. 但终端程序又由谁启动呢?在计算机上启动Linux时,内核装入并启动init程序. ...

  3. 最长公共子串 NYOJ 36

    http://acm.nyist.net/JudgeOnline/problem.php?pid=36 最长公共子序列 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 ...

  4. grep与egrep

    当只有一个匹配条件时:egrep pattern file等价于grep -E pattern file 例如: 当多个匹配条件时,只能用egrep -e pattern1 -e pattern2 - ...

  5. 【Hibernate】Hibernate系列8之管理session

    管理session 更简单的,注入对象:

  6. 《ASP.NET1200例》<ItemTemplate>标签在html里面有什么具体的作用

    严格的来说 <ItemTemplate> 在html中无意义,他只是针对诸如 Repeater.DataList.GridView中的一个模板 至于里面的含义,你可以这样想,既然Repea ...

  7. 反弹SHELL

    [姿势] http://www.91ri.org/6620.html http://www.waitalone.cn/linux-shell-rebound-under-way.html [图释] h ...

  8. IDEA 14快捷键

    1.ctrl+alt+左箭头.右箭头:返回到上次浏览的代码处(相当于Eclipse的alt+左右箭头) 编辑类: Ctrl+Space 基本代码实例(类.方法.变量) Ctrl + Shift + S ...

  9. spring无法扫描jar包的问题

    在日常开发中往往会对公共的模块打包发布,然后调用公共包的内容.然而,最近对公司的公共模块进行整理发布后.spring却无法扫描到相应的bean.折腾了好久,最终发现是认识上的误区. 2015-11-1 ...

  10. MySQL自带information_schema数据库使用

    MySQL的information_schema数据库是什么,有什么作用? 大家在安装或使用MYSQL时,会发现除了自己安装的数据库以外,还有一个 information_schema数据库.info ...