Rain on your Parade
Rain on your Parade
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 655350/165535 K (Java/Others)
Total Submission(s): 2113 Accepted Submission(s): 647
Problem Description
You’re giving a party in the garden of your villa by the sea. The party is a huge success, and everyone is here. It’s a warm, sunny evening, and a soothing wind sends fresh, salty air from the sea. The evening is progressing just as you had imagined. It could be the perfect end of a beautiful day.
But nothing ever is perfect. One of your guests works in weather forecasting. He suddenly yells, “I know that breeze! It means its going to rain heavily in just a few minutes!” Your guests all wear their best dresses and really would not like to get wet, hence they stand terrified when hearing the bad news.
You have prepared a few umbrellas which can protect a few of your guests. The umbrellas are small, and since your guests are all slightly snobbish, no guest will share an umbrella with other guests. The umbrellas are spread across your (gigantic) garden, just like your guests. To complicate matters even more, some of your guests can’t run as fast as the others.
Can you help your guests so that as many as possible find an umbrella before it starts to pour?
Given the positions and speeds of all your guests, the positions of the umbrellas, and the time until it starts to rain, find out how many of your guests can at most reach an umbrella. Two guests do not want to share an umbrella, however.
Input
The input starts with a line containing a single integer, the number of test cases.
Each test case starts with a line containing the time t in minutes until it will start to rain (1 <=t <= 5). The next line contains the number of guests m (1 <= m <= 3000), followed by m lines containing x- and y-coordinates as well as the speed si in units per minute (1 <= si <= 3000) of the guest as integers, separated by spaces. After the guests, a single line contains n (1 <= n <= 3000), the number of umbrellas, followed by n lines containing the integer coordinates of each umbrella, separated by a space.
The absolute value of all coordinates is less than 10000.
Output
For each test case, write a line containing “Scenario #i:”, where i is the number of the test case starting at 1. Then, write a single line that contains the number of guests that can at most reach an umbrella before it starts to rain. Terminate every test case with a blank line.
Sample Input
2
1
2
1 0 3
3 0 3
2
4 0
6 0
1
2
1 1 2
3 3 2
2
2 2
4 4
Sample Output
Scenario #1:
2
Scenario #2:
2
Source
HDU 2008-10 Public Contest
Recommend
lcy
一看就是求二分图的最大匹配,不过点太多了匈牙利不行,要用Hopcroft_Karp.别人的代码没看懂,不过幸好接口用起来挺方便.贴上大牛的代码:
#include<cstring> //HK算法。。
#include<queue>
#include<cmath>
#include<cstdio>
#include<vector> using namespace std;
const int maxn=;
int n,m;
struct Pos{
int x,y;
}man[maxn],umbr[maxn];
vector<int> child[maxn];
int speed[maxn];//人的速度
int cx[maxn],cy[maxn];//集合X Y的匹配值
int distx[maxn],disty[maxn];//记录距离 bool bfs(){
bool flag=false;
memset(distx,,sizeof(distx));//距离初始为0
memset(disty,,sizeof(disty)); queue<int> que;
for(int i=;i<=n;i++)//把X集合中 所有未匹配的加入队列
if(cx[i]==-)
que.push(i);
while(!que.empty())//集合非空
{
int x=que.front();
que.pop();
for(int i = ; i < child[ x ].size() ; i++ )//所有以i为起点的边
{
int y = child[ x ][ i ];
if( !disty[ y ] )//该边未被使用
{
disty[ y ]=distx[ x ] + ;//距离+1
if(cy[ y ] == -) flag=true;//该点未被使用可以增加匹配
else
{
distx[ cy[ y ] ]= disty[ y ] + ;
que.push( cy[ y ] );
}
}
}
}
return flag;
}
bool dfs(int x){//寻找增广路
for(int i=;i<child[x].size();i++)//枚举所有以i为起点的边
{
int y=child[x][i];
if(disty[ y ] == distx[ x ]+)//距离刚好为1表明相连
{
disty[ y ] = ;
if(cy[ y ] == - || dfs( cy[ y ] ))//找到一条增广路
{
cx[ x ] = y ; cy[ y ] = x;//保存匹配值
return true;
}
}
}
return false;
}
int Hopcroft_Karp(){
memset(cx,-,sizeof(cx));
memset(cy,-,sizeof(cy));
int ans=;
while(bfs())//如果距离更新成功,X集合中每一个点找一次增广路
{
for(int i=;i<=n;i++)
if(cx[i]==- && dfs(i))
ans++;
}
return ans;
} double dis(int i,int j){
return sqrt( (double)(man[i].x-umbr[j].x)*(man[i].x-umbr[j].x)+ (man[i].y-umbr[j].y)*(man[i].y-umbr[j].y) );
}
int main(){
int t,cas=,time;
scanf("%d",&t);
while(t--){
scanf("%d%d",&time,&n);
for(int i=;i<=n;i++)
scanf("%d%d%d",&man[i].x,&man[i].y,&speed[i]); scanf("%d",&m);
for(int i=;i<=m;i++)
scanf("%d%d",&umbr[i].x,&umbr[i].y); for(int i=;i<=n;i++)
child[i].clear(); for(int i=;i<=n;i++)//能够在下雨前拿到伞的建一条边
for(int j=;j<=m;j++)
if(speed[i]*time >= dis(i,j))
child[i].push_back(j); printf("Scenario #%d:\n",++cas);
printf("%d\n",Hopcroft_Karp());
printf("\n"); }
}
Rain on your Parade的更多相关文章
- HDOJ 2389 Rain on your Parade
HK.... Rain on your Parade Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 655350/165535 K ...
- HDU 2389 Rain on your Parade / HUST 1164 4 Rain on your Parade(二分图的最大匹配)
HDU 2389 Rain on your Parade / HUST 1164 4 Rain on your Parade(二分图的最大匹配) Description You're giving a ...
- Hdu2389 Rain on your Parade (HK二分图最大匹配)
Rain on your Parade Problem Description You’re giving a party in the garden of your villa by the sea ...
- HDU 2389 Rain on your Parade(二分匹配,Hopcroft-Carp算法)
Rain on your Parade Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 655350/165535 K (Java/Ot ...
- HDU2389:Rain on your Parade(二分图最大匹配+HK算法)
Rain on your Parade Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 655350/165535 K (Java/Ot ...
- HDU 2389 ——Rain on your Parade——————【Hopcroft-Karp求最大匹配、sqrt(n)*e复杂度】
Rain on your Parade Time Limit:3000MS Memory Limit:165535KB 64bit IO Format:%I64d & %I64 ...
- HDU2389 Rain on your Parade —— 二分图最大匹配 HK算法
题目链接:https://vjudge.net/problem/HDU-2389 Rain on your Parade Time Limit: 6000/3000 MS (Java/Others) ...
- Hdu 3289 Rain on your Parade (二分图匹配 Hopcroft-Karp)
题目链接: Hdu 3289 Rain on your Parade 题目描述: 有n个客人,m把雨伞,在t秒之后将会下雨,给出每个客人的坐标和每秒行走的距离,以及雨伞的位置,问t秒后最多有几个客人可 ...
- hdu-2389.rain on your parade(二分匹配HK算法)
Rain on your Parade Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 655350/165535 K (Java/Ot ...
随机推荐
- FTP服务器常规操作
导读 FTP协议是Internet文件传输的基础,它是由一系列规格说明文档组成,目标是提高文件的共享性,提供非直接使用远程计算机,使存储介质对用户透明和可靠高效地传送数据.下面就由我给大家简单介绍一下 ...
- iOS团队开发者测试
那么你需要在你下载证书的那个电脑上从钥匙串-->选择证书-->右键到处证书,保存为.p12的证书,以后这个证书拷贝到任何电脑上去都是可以使用的! 本来只有一台电脑可以测试, 现在要团队开发 ...
- Redis使用介绍
Redis 是一个高性能的key-value数据库. redis的出现,很大程度补偿了memcached这类keyvalue存储的不足,在部 分场合可以对关系数据库起到很好的补充作用.它提供了Pyth ...
- 【云计算】docker的小知识,帮你更深入理解容器技术
关于docker的15个小tip 1. 获取最近运行容器的id 这是我们经常会用到的一个操作,按照官方示例,你可以这样做(环境ubuntu): $ ID=$(docker run ubuntu e ...
- Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
- C++使用throw抛出异常
引用: c++ 使用throw抛出异常 抛出异常(也称为抛弃异常)即检测是否产生异常,在C++中,其采用throw语句来实现,如果检测到产生异常,则抛出异常.该语句的格式为:throw 表达式; ...
- eclipse 启动后,啥也不干,就一直在loading descriptor for XXX (XXX为工程名),,其他什么操作都不能操作。 如下图所示,保存文件也无法保存。 这个怎么办?一年好几天,什么都干不了!!!!!
解决办法: 解决办法是 断一下网就好了
- spring3 + mybatis + maven:junit测试错误
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component c ...
- iOS 中通过使用Google API获得Google服务
最近使用了google drive这个云存储,官方指导网址为 https://developers.google.com/drive/ios/ . 官方库代码网址为 http://code.googl ...
- Enum:Smallest Difference(POJ 2718)
最小的差别 题目大意:输入一串数字,问你数字的组合方式,你可以随意用这些数字组合(无重复)来组合成一些整数(第一位不能为0),然后问你组合出来的整数的差最小是多少? 这一题可以用枚举的方法去做,这里我 ...