$f[i]=\max(a[j]+\lceil\sqrt{|i-j|}\rceil)$,

拆开绝对值,考虑j<i,则决策具有单调性,j>i同理,

所以可以用分治$O(n\log n)$解决。

#include<cstdio>
#include<cmath>
#define N 500010
int n,i,l,r,mid,a[N],b[N],f[N],g[N];
inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
void dp1(int l,int r,int dl,int dr){
if(l>r)return;
int m=(l+r)>>1,i,dm;double t,fm=0;
for(i=dl;i<=dr&&i<=m;i++)if((t=std::sqrt(m-i)+a[i])>=fm)dm=i,fm=t;
f[m]=a[dm]+b[m-dm];
dp1(l,m-1,dl,dm),dp1(m+1,r,dm,dr);
}
void dp2(int l,int r,int dl,int dr){
if(l>r)return;
int m=(l+r)>>1,i,dm;double t,fm=0;
for(i=dr;i>=dl&&i>=m;i--)if((t=std::sqrt(i-m)+a[i])>=fm)dm=i,fm=t;
g[m]=a[dm]+b[dm-m];
dp2(l,m-1,dl,dm),dp2(m+1,r,dm,dr);
}
int main(){
for(read(n),i=1;i<=n;i++)read(a[i]);
for(i=1;i<n;i++){
l=1,r=708;
while(l<=r){
mid=(l+r)>>1;
if(mid*mid>=i)r=(b[i]=mid)-1;else l=mid+1;
}
}
dp1(1,n,1,n),dp2(1,n,1,n);
for(i=1;i<=n;i++)printf("%d\n",(f[i]>g[i]?f[i]:g[i])-a[i]);
return 0;
}

  

BZOJ2216 : [Poi2011]Lightning Conductor的更多相关文章

  1. BZOJ2216 [Poi2011]Lightning Conductor 【决策单调性dp】

    题目链接 BZOJ2216 题解 学过高中数学都应知道,我们要求\(p\)的极值,参变分离为 \[h_j + sqrt{|i - j|} - h_i \le p\] 实际上就是求\(h_j + sqr ...

  2. BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】

    Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...

  3. bzoj2216: [Poi2011]Lightning Conductor(分治决策单调性优化)

    每个pi要求 这个只需要正反DP(?)一次就行了,可以发现这个是有决策单调性的,用分治优化 #include<iostream> #include<cstring> #incl ...

  4. BZOJ2216: [Poi2011]Lightning Conductor(DP 决策单调性)

    题意 题目链接 Sol 很nice的决策单调性题目 首先把给出的式子移项,我们要求的$P_i = max(a_j + \sqrt{|i - j|}) - a_i$. 按套路把绝对值拆掉,$p_i = ...

  5. 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性

    [BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...

  6. 【BZOJ2216】Lightning Conductor(动态规划)

    [BZOJ2216]Lightning Conductor(动态规划) 题面 BZOJ,然而是权限题 洛谷 题解 \(\sqrt {|i-j|}\)似乎没什么意义,只需要从前往后做一次再从后往前做一次 ...

  7. [bzoj 2216] [Poi2011] Lightning Conductor

    [bzoj 2216] [Poi2011] Lightning Conductor Description 已知一个长度为n的序列a1,a2,-,an. 对于每个1<=i<=n,找到最小的 ...

  8. P3515 [POI2011]Lightning Conductor(决策单调性分治)

    P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下 ...

  9. 【bzoj2216】[Poi2011]Lightning Conductor 1D1D动态规划优化

    Description 已知一个长度为n的序列a1,a2,…,an.对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p – sqrt(abs ...

随机推荐

  1. ssh和mvc理论基础

    ssh中mvc到底指的什么 mvcsshhibernatespringstrutsioc在SSH整合的架构中,Spring充当了一个容器的作用,Spring使用IOC和AOP技术接管了Hibernat ...

  2. C语言可以包含.txt文件

    // fa.cpp : 定义控制台应用程序的入口点.// #include "stdafx.h"#include "iostream"#include" ...

  3. 混合高斯模型和EM

    <统计学习方法>这本书上写的太抽象,可参考这位大神的:http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html

  4. 消息通信库ZeroMQ 4.0.4安装指南

    一.ZeroMQ介绍 ZeroMQ是一个开源的消息队列系统,按照官方的定义,它是一个消息通信库,帮助开发者设计分布式和并行的应用程序. 首先,我们需要明白,ZeroMQ不是传统的消息队列系统(比如Ac ...

  5. js中的闭包之我理解

    闭包是一个比较抽象的概念,尤其是对js新手来说.书上的解释实在是比较晦涩,对我来说也是一样. 但是他也是js能力提升中无法绕过的一环,几乎每次面试必问的问题,因为在回答的时候.你的答案的深度,对术语的 ...

  6. 【OpenStack】OpenStack系列3之Swift详解

    Swift安装部署(与keystone依赖包有冲突,需要安装不同版本eventlet) 参考:http://www.server110.com/openstack/201402/6662.html h ...

  7. SpringMVC请求处理流程

    从web.xml中 servlet的配置开始, 根据servlet拦截的url-parttern,来进行请求转发   Spring MVC工作流程图   图一   图二    Spring工作流程描述 ...

  8. java 实现二分查找法

    /** * 二分查找又称折半查找,它是一种效率较高的查找方法. [二分查找要求]:1.必须采用顺序存储结构 2.必须按关键字大小有序排列. * @author Administrator * */ p ...

  9. Java for LeetCode 079 Word Search

    Given a 2D board and a word, find if the word exists in the grid. The word can be constructed from l ...

  10. Greedy:Stall Reservations(POJ 3190)

    牛挤奶 题目大意:一群牛很挑剔,他们仅在一个时间段内挤奶,而且只能在一个棚里面挤,不能与其他牛共享地方,现在给你一群牛,问你如果要全部牛都挤奶,至少需要多少牛棚? 这一题如果把时间区间去掉,那就变成装 ...