$f[i]=\max(a[j]+\lceil\sqrt{|i-j|}\rceil)$,

拆开绝对值,考虑j<i,则决策具有单调性,j>i同理,

所以可以用分治$O(n\log n)$解决。

#include<cstdio>
#include<cmath>
#define N 500010
int n,i,l,r,mid,a[N],b[N],f[N],g[N];
inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
void dp1(int l,int r,int dl,int dr){
if(l>r)return;
int m=(l+r)>>1,i,dm;double t,fm=0;
for(i=dl;i<=dr&&i<=m;i++)if((t=std::sqrt(m-i)+a[i])>=fm)dm=i,fm=t;
f[m]=a[dm]+b[m-dm];
dp1(l,m-1,dl,dm),dp1(m+1,r,dm,dr);
}
void dp2(int l,int r,int dl,int dr){
if(l>r)return;
int m=(l+r)>>1,i,dm;double t,fm=0;
for(i=dr;i>=dl&&i>=m;i--)if((t=std::sqrt(i-m)+a[i])>=fm)dm=i,fm=t;
g[m]=a[dm]+b[dm-m];
dp2(l,m-1,dl,dm),dp2(m+1,r,dm,dr);
}
int main(){
for(read(n),i=1;i<=n;i++)read(a[i]);
for(i=1;i<n;i++){
l=1,r=708;
while(l<=r){
mid=(l+r)>>1;
if(mid*mid>=i)r=(b[i]=mid)-1;else l=mid+1;
}
}
dp1(1,n,1,n),dp2(1,n,1,n);
for(i=1;i<=n;i++)printf("%d\n",(f[i]>g[i]?f[i]:g[i])-a[i]);
return 0;
}

  

BZOJ2216 : [Poi2011]Lightning Conductor的更多相关文章

  1. BZOJ2216 [Poi2011]Lightning Conductor 【决策单调性dp】

    题目链接 BZOJ2216 题解 学过高中数学都应知道,我们要求\(p\)的极值,参变分离为 \[h_j + sqrt{|i - j|} - h_i \le p\] 实际上就是求\(h_j + sqr ...

  2. BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】

    Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...

  3. bzoj2216: [Poi2011]Lightning Conductor(分治决策单调性优化)

    每个pi要求 这个只需要正反DP(?)一次就行了,可以发现这个是有决策单调性的,用分治优化 #include<iostream> #include<cstring> #incl ...

  4. BZOJ2216: [Poi2011]Lightning Conductor(DP 决策单调性)

    题意 题目链接 Sol 很nice的决策单调性题目 首先把给出的式子移项,我们要求的$P_i = max(a_j + \sqrt{|i - j|}) - a_i$. 按套路把绝对值拆掉,$p_i = ...

  5. 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性

    [BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...

  6. 【BZOJ2216】Lightning Conductor(动态规划)

    [BZOJ2216]Lightning Conductor(动态规划) 题面 BZOJ,然而是权限题 洛谷 题解 \(\sqrt {|i-j|}\)似乎没什么意义,只需要从前往后做一次再从后往前做一次 ...

  7. [bzoj 2216] [Poi2011] Lightning Conductor

    [bzoj 2216] [Poi2011] Lightning Conductor Description 已知一个长度为n的序列a1,a2,-,an. 对于每个1<=i<=n,找到最小的 ...

  8. P3515 [POI2011]Lightning Conductor(决策单调性分治)

    P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下 ...

  9. 【bzoj2216】[Poi2011]Lightning Conductor 1D1D动态规划优化

    Description 已知一个长度为n的序列a1,a2,…,an.对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p – sqrt(abs ...

随机推荐

  1. 华为2013校招之哈工大威海 上机试题之一:报数问题:设有N 个人围坐一圈并按顺时针方向从1 到N 编号,从第S个人开始进行1 到M报数,报 数到第 M个人时,此人出圈,再从他的下一个人重新开始1 到 M的报数,如此进行下去直 到所有的人都出圈为止。现要打印出出圈次序。

    1.  报数游戏 问题描述: 设有N 个人围坐一圈并按顺时针方向从1 到N 编号,从第S个人开始进行1 到M报数,报 数到第 M个人时,此人出圈,再从他的下一个人重新开始1 到 M的报数,如此进行下去 ...

  2. http://www.zhihu.com/question/24896283

    http://www.zhihu.com/question/24896283 Rix Tox,太不專業了 三百.知乎用户.raintorr 等人赞同 1. 更改变量名的几种方法这种情况下该如何快速选中 ...

  3. 【SpringMVC】SpringMVC系列5之@RequestHeader 映射请求头属性值

    5.@RequestHeader 映射请求头属性值 5.1.概述 请求头包含了若干个属性,服务器可据此获知客户端的信息,通过 @RequestHeader 即可将请求头中的属性值绑定到处理方法的入参中 ...

  4. Dom lesson1

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  5. maven项目 Java compiler level does not match the version of the installed Java project facet

    因工作的关系,Eclipse开发的Java项目拷来拷去,有时候会报一个很奇怪的错误.明明源码一模一样,为什么项目复制到另一台机器上,就会报“java compiler level does not m ...

  6. 正则表达式里"-"中划线的使用注意

    今天要匹配正则表达式,把非法的字符找出来,开始的写法是这个 [^A-Za-z0-9_.*-+%!],我的目的是把_.*-+%!这7个字符算合法字符,但是发现有许多其他字符也合法了,原来是中划线的位置不 ...

  7. (转)SQL Server 中WITH (NOLOCK)浅析

    概念介绍 开发人员喜欢在SQL脚本中使用WITH(NOLOCK), WITH(NOLOCK)其实是表提示(table_hint)中的一种.它等同于 READUNCOMMITTED . 具体的功能作用如 ...

  8. Javascript配合jQuery实现流畅的前端验证

    做前端时一般都习惯用JavaScript进行表单的简单验证比如非空验证和正则表达式验证,这样过滤后的数据提交到服务端再由专门的控制器做数据处理,这样能减轻服务器的负担,下面看一下前端验证的简单步骤: ...

  9. hdu 1022 Train Problem I 解题报告

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1022 又是一道栈的练习,这次也是没有用到STL中的栈来实现.用来保存操作过程的数组(process[] ...

  10. jQuery过滤选择器

    //基本过滤器$('li:first').css('background','#ccc');//第一个元素$('li:last').css('background','red');//最后一个元素$( ...