9.1 Real versus Complex

  1. R= line of all real numbers (\(-\infty < x < \infty\)) \(\longleftrightarrow\) C=plane of all complex numbers \(z=x+iy\)
  2. |x| = absolute value of x \(\longleftrightarrow\) \(|z| = \sqrt{x^2+y^2} = r\) = absolute value (or modulus) of z
  3. 1 and -1 solve \(x^2=1\) \(\longleftrightarrow\) \(z=1,w,...,w^{n-1}\) solve \(z^n=1\) where \(w = e^{2\pi i/n}\)
  4. \(R^n\) : vectors with n real components \(\longleftrightarrow\) \(C^n\): vectors with n complex components
  5. length : \(||x||^2 = x_1^2 + \cdots + x_n^2\) \(\longleftrightarrow\) \(||z||^2 = |z_1|^2 + \cdots + |z_n|^2\)
  6. transpose : \(A_{ij}^T = A_{ji}\) \(\longleftrightarrow\) conjugate transpose \(A_{ij}^H = \overline{A_{ji}}\)
  7. dot/inner product : \(x^Ty = x_1y_1 + \cdots + x_ny_n\) \(\longleftrightarrow\) dot/inner product : \(u^Hv = \overline{u_1}v_1 + \cdots + \overline{u_n}v_n\)
  8. reason for \(A^T\) : \((Ax)^Ty = x^T(A^Ty)\) \(\longleftrightarrow\) reason for \(A^H\): \((Au)^Hv = u^H(A^Hv)\)
  9. orthgonality : \(x^Ty = 0\) \(\longleftrightarrow\) orthgonality : \(u^Hv = 0\)
  10. symmetric matrices: \(S=S^T\) \(\longleftrightarrow\) Hermitian matrices: \(S=S^H\)
  11. skew-symmetric matrices : \(K^T = K^{-1}\) \(\longleftrightarrow\) skew-Hermitian matrices : \(K^H = -K\)
  12. orthgonal matrices : \(Q^T = Q^{-1}\) \(\longleftrightarrow\) unitary matrices : \(U^H = U^{-1}\)
  13. orthonormal matrices : \(Q^TQ = I\) \(\longleftrightarrow\) orthonormal matrices : \(U^HU = I\)
  14. \(S = Q\Lambda Q^{-1} = Q\Lambda Q^T\) \(\longleftrightarrow\) \(S = U\Lambda U^{-1} = U\Lambda U^H\)
  15. \((Qx)^T(Qy)= x^Ty\) and \(||Qx|| = ||x||\) \(\longleftrightarrow\) \((Ux)^H(Uy)= x^Hy\) and \(||Uz|| = ||z||\)

9.2 Complex Numbers

Complex numbers correspond to points in a plane. Real numbers go along the x axis.Pure imaginary numbers are on the y axis. The complex number \(a+bi\) is at the point with coordinates (a, b).

Keys:

  1. Add : \((a + bi) + (c + di) = (a+c)+(b+d)i\)

  2. Multiply : \((a+bi)(a-bi)=a^2+b^2\)

  3. Eigenvalues \(\lambda\) 和 \(\overline{\lambda}\) : If \(Ax=\lambda x\) and A is real then \(A\overline{x}=\overline{\lambda}\overline{x}\)

  4. Euler's Formula : \(e^{i\theta}= cos\theta + isin\theta\)

  5. Polar Form : The number \(z=a+ib\) is also \(z=rcos\theta + irsin\theta = re^{i\theta} \ \ with \ \ r = |z| = \sqrt{a^2 + b^2}\)

  6. Powers: The nth power of \(z=r(cos\theta+isin\theta)\) is \(z^n=r^n(cos(n\theta)+isin(n\theta))\)

  7. The nth roots of 1 : Set \(w=e^{2\pi i/n}\), the nth powers of \(1,w,w^2,...,w^{n-1}\) all equal 1, they solve the equation \(z^n=1\)

9.3 Hermitian and Unitary Matrices

When we transpose a complex vector z or matrix A , also take the complex conjugate too.

With \(z_j = a_j + i b_j\):

conjugate transpose : \(\overline{z}^T=[\overline{z_1} \cdots \overline{z_n}] = [a_1 - ib_1 \cdots a_n - ib_n]\)

length squared : \([\overline{z_1} \cdots \overline{z_n}] \left[ \begin{matrix} z_1 \\ \vdots \\ z_n\end{matrix}\right]= |z_1|^2 + \cdots + |z_n|^2 \longleftrightarrow \overline{z}^Tz=z^Hz = ||z||^2\) (\(z^H\) is z Hermitian)

Inner product : \(u^{H}v = [\overline{u_1} \cdots \overline{u_n}] \left[ \begin{matrix} v_1 \\ \vdots \\ v_n\end{matrix}\right]= \overline{u_1}v_1 + \cdots + \overline{u_n}v_n\)

Hermitian Matrix

Among complex matrices, with Hermitian matrices : \(S=S^H, s_{ij} = \overline{s_{ji}}\)

\[S = \left[ \begin{matrix} 2&3-3i \\ 3+3i&5 \end{matrix} \right] \\
S^H = \left[ \begin{matrix} 2&3+3(-i) \\ 3-3(-i)&5 \end{matrix} \right] = \left[ \begin{matrix} 2&3-3i \\ 3+3i&5 \end{matrix} \right] = S \\
\]

Eigenvalues of a Hermitian matrix is real, and eigenvectors of a Hermitian are orthogonal.

Unitary Matrices

A unitary matrix Q is a complex square matrix that has orthonormal columns.

Unitary matrix that diagonalizes S : \(Q=\frac{1}{\sqrt{3}}\left[ \begin{matrix} 1&1-i \\ 1+i&-1 \end{matrix}\right]\)

Orthonormal columns : \(Q^HQ=I\)

Square + Orthonormal columns = Unitary matrix : \(Q^{H} = Q^{-1}\)

If Q is unitary the \(||Qz||=||z||\). Therefore \(Qz=\lambda z\) leads to \(|\lambda| = 1\)

9.4 The Fast Fourier Transform

Fourier Matrix

\[F_n = \left [ \begin{matrix} 1&1&\cdots&1 \\ 1&w^1&\cdots&w^{n-1} \\ 1&w^2&\cdots&w^{2(n-1)}\\ \vdots&\vdots&\vdots&\vdots \\ 1&w^{n-1}&\cdots&w^{(n-1)^2}\end{matrix} \right] \\
(F_n)_{ij} = w^{ij}, (i,j=0,1,2,...,n-1) \\
w_n = e^{2\pi / n * i} \\
w_n = e^{\pi / 2 * i} = i, w_n = e^{\pi * i} = -1 \\
w_n = e^{3\pi / 2 * i} = -i, w_n = e^{2\pi * i} = 1
\]

example:

\(F_4\) is orthogonal and symmetric.

\[F_4 = \left [ \begin{matrix} 1&1&1&1 \\ 1&w_4^1&w_4^{2}&w_4^{3} \\ 1&w_4^2&w_4^{4}&w_4^{6}\\ 1&w_4^{3}&w_4^{6}&w_4^{9}\end{matrix} \right] =
\left [ \begin{matrix} 1&1&1&1 \\ 1&i&-1&-i \\ 1&-1&1&-1\\ 1&-i&-1&i\end{matrix} \right]
\\

\left [ \begin{matrix} &&& \\ &F_2&& \\ &&& \\ &&&F_2\end{matrix} \right] =
\left [ \begin{matrix} 1&1&& \\ 1&i^2&& \\ &&1&1\\ &&1&i^2\end{matrix} \right]
\\
\Downarrow \\

F_4 =
\left [ \begin{matrix} 1&1&1&1 \\ 1&w_4^1&w_4^{2}&w_4^{3} \\ 1&w_4^2&w_4^{4}&w_4^{6}\\ 1&w_4^{3}&w_4^{6}&w_4^{9}\end{matrix} \right] =
\left [ \begin{matrix} 1&&1& \\ &1&&i \\ 1&&-1&\\ &1&&-i\end{matrix} \right]

\left [ \begin{matrix} 1&1&& \\ 1&i^2&& \\ &&1&1\\ &&1&i^2\end{matrix} \right]

\left [ \begin{matrix} 1&&& \\ &&1& \\ &1&& \\ &&&1 \end{matrix} \right] \\
\]

\(w_4 = e^{\pi / 2 * i} \\
F_4^{H}F_4 = I, \ \ F^{-1}_4 = \frac{1}{4}\overline{F}_4\)

The key idea is to connect \(F_n\) with the half-size Fourier matrix \(F_{n/2}\), and keep going to \(F_{n/4}\),which can be factored in a way that procdeces many zeros, and improve multiply quickly.

Save more than half of time : \(n^2 \Rightarrow 1/2 n log_2^n\)

\[F_{64} = \left[ \begin{matrix} I_{32}&D_{32} \\ I_{32}&-D_{32} \end{matrix}\right]
\left[ \begin{matrix} F_{32}&0 \\ 0&F_{32} \end{matrix}\right]
\left[ \begin{matrix} P_{64} \end{matrix}\right] \\

=\left[ \begin{matrix} \left[ \begin{matrix} I_{16}&D_{16} \\ I_{16}&-D_{16} \end{matrix}\right]&0 \\ 0& \left[ \begin{matrix} I_{16}&D_{16} \\ I_{16}&-D_{16}\end{matrix}\right] \end{matrix}\right]

\left[ \begin{matrix} \left[ \begin{matrix} F_{16}&0 \\ 0&F_{16} \end{matrix}\right]&0 \\ 0& \left[ \begin{matrix} F_{16}&0 \\ 0&F_{16} \end{matrix}\right] \end{matrix}\right]

\left[ \begin{matrix} P_{32}& \\ &P_{32} \end{matrix}\right] \\
D = \left[ \begin{matrix} 1&&& \\ &w^1&& \\ &&\ddots& \\ &&&w^n \end{matrix}\right] \\
P = \left [ \begin{matrix} even-odd \\ permutation \end{matrix}\right]
\]

9. Complex Vectors and Matrices的更多相关文章

  1. Matrices and Vectors

    Matrices and Vectors Matrices are 2-dimensional arrays: A vector is a matrix with one column and man ...

  2. 理工科应该的知道的C/C++数学计算库(转)

    理工科应该的知道的C/C++数学计算库(转) 作为理工科学生,想必有限元分析.数值计算.三维建模.信号处理.性能分析.仿真分析...这些或多或少与我们常用的软件息息相关,假如有一天你只需要这些大型软件 ...

  3. (转)几种范数的解释 l0-Norm, l1-Norm, l2-Norm, … , l-infinity Norm

    几种范数的解释 l0-Norm, l1-Norm, l2-Norm, - , l-infinity Norm from Rorasa's blog l0-Norm, l1-Norm, l2-Norm, ...

  4. Mathematics for Computer Graphics数学在计算机图形学中的应用 [转]

    最近严重感觉到数学知识的不足! http://bbs.gameres.com/showthread.asp?threadid=10509 [译]Mathematics for Computer Gra ...

  5. The plot Function in matlab

    from http://pundit.pratt.duke.edu/wiki/MATLAB:Plotting The plot Function The plot function is used t ...

  6. Open CASCADE 基础类(Foundation Classes)

    1 介绍(Introduction) 1 如何使用Open CASCADE技术(OCCT)基础类. This manual explains how to use Open CASCADE Techn ...

  7. GNU scientific library

    GNU scientific library 是一个强大的C,C++数学库.它涉及的面很广,并且代码效率高,接口丰富.正好最近做的一个项目中用到多元高斯分布,就找到了这个库. GNU scientif ...

  8. Mathematics for Computer Graphics

    Mathematics for Computer Graphics 最近严重感觉到数学知识的不足! http://bbs.gameres.com/showthread.asp?threadid=105 ...

  9. 在WINDOWS中安装使用GSL(MinGW64+Sublime Text3 & Visual Studio)

    本文介绍在Windows下安装使用GSL库,涉及GSL两个版本(官方最新版及GSL1.8 VC版).msys shell.GCC.G++等内容,最终实现对GSL安装及示例基于MinGW64在Subli ...

  10. Foundations of Game Engine Development Volume 1 Mathematics (Eric Lengyel 著)

    http://www.foundationsofgameenginedev.com/ Chapter1 Vectors and Matrices (已看) Chapter2 Transforms (已 ...

随机推荐

  1. VUE 腾讯云 web端上传视频SDK 上传进度无法显示

    上传视频官方文档:https://cloud.tencent.com/document/product/266/9239 错误信息 在本地调试可以显示视频上传进度,也可以打印到浏览器控制台.但是,发布 ...

  2. 【LeetCode二叉树#20】二叉搜索树转换为累加树,巩固二叉树的遍历(特殊的中序遍历)

    将二叉搜索树转换为累加树 力扣题目链接(opens new window) 给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 no ...

  3. 在Windows环境中配置使用我们搭建的DNS服务器

    1.修改网卡的设置,首选DNS用我们自己的 2.在命令行中测试 专业的nslookup 3.已知的问题 每次在DNS服务器的web界面中,修改了解析,必须用docker restart dns命令,把 ...

  4. 【Azure 应用服务】在App Service 中如何通过Managed Identity获取访问Azure资源的Token呢? 如Key Vault

    问题描述 当App Service启用了Managed Identity后,Azure中的资源就可以使用此Identity访问. 如果需要显示的获取这个Token,如何实现呢? 问题解答 在App S ...

  5. 【Azure 应用服务】Function App中的函数(Functions)删除问题

    问题描述 Function App 中的函数如何删除问题 问题分析 1)在Function App的门户上,点击"Delete"进行删除 2) 进入Function App的高级管 ...

  6. 面试官上来就让手撕HashMap的7种遍历方式,当场愣住,最后只写出了3种

    写在开头 今天有个小伙伴私信诉苦,说面试官上来就让他手撕HashMap的7种遍历方式,最终只写出3种常用的,怀疑面试官是在故意***难.这个问题大家怎么看? 反正我个人感觉这肯定不是***难,&quo ...

  7. 代码随想录算法训练营第二十七天| 39. 组合总和 40.组合总和II 131.分割回文串

      39. 组合总和 卡哥建议:本题是 集合里元素可以用无数次,那么和组合问题的差别 其实仅在于 startIndex上的控制 题目链接/文章讲解:https://programmercarl.com ...

  8. linux的简单使用

    了解Linux的简单使用 Linux的安装 下载Linux Ubuntu版本和虚拟机VMware软件. 我已经提前下载好了,下载好的文件分享出来bd 这个是文件夹内的VMWare软件的注册码,安装完成 ...

  9. CefSharp 开发触屏终端遇到的问题记录

    一.背景 最开始准备使用的 Chromely 做一个终端机项目,本来以为挺顺利的一个事情折腾了两天半.由于无法直接控制窗体的属性,最后还是切换到 .NET Framework 4.8 + CefSha ...

  10. 来自 AI Secure 实验室的 LLM 安全排行榜简介

    近来,LLM 已深入人心,大有燎原之势.但在我们将其应用于千行百业之前,理解其在不同场景下的安全性和潜在风险显得尤为重要.为此,美国白宫发布了关于安全.可靠.可信的人工智能的行政命令; 欧盟人工智能法 ...