神经网络之卷积篇:详解残差网络为什么有用?(Why ResNets work?)
详解残差网络为什么有用?
为什么ResNets能有如此好的表现,来看个例子,它解释了其中的原因,至少可以说明,如何构建更深层次的ResNets网络的同时还不降低它们在训练集上的效率。通常来讲,网络在训练集上表现好,才能在Hold-Out交叉验证集或dev集和测试集上有好的表现,所以至少在训练集上训练好ResNets是第一步。
先来看个例子,一个网络深度越深,它在训练集上训练的效率就会有所减弱,这也是有时候不希望加深网络的原因。而事实并非如此,至少在训练ResNets网络时,并非完全如此,举个例子。
假设有一个大型神经网络,其输入为\(X\),输出激活值\(a^{[l]}\)。假如想增加这个神经网络的深度,那么用Big NN表示,输出为$ a^{\left\lbrack l\right\rbrack}\(。再给这个网络额外添加两层,依次添加两层,最后输出为\)a^{\left\lbrack l + 2 \right\rbrack}\(,可以把这两层看作一个**ResNets**块,即具有捷径连接的残差块。为了方便说明,假设在整个网络中使用**ReLU**激活函数,所以激活值都大于等于0,包括输入\)X$的非零异常值。因为ReLU激活函数输出的数字要么是0,要么是正数。
看一下\(a^{\left\lbrack l + 2\right\rbrack}\)的值,即\(a^{\left\lbrack l + 2\right\rbrack} = g(z^{\left\lbrack l + 2 \right\rbrack} + a^{\left\lbrack l\right\rbrack})\),添加项\(a^{\left\lbrack l\right\rbrack}\)是刚添加的跳跃连接的输入。展开这个表达式\(a^{\left\lbrack l + 2 \right\rbrack} = g(W^{\left\lbrack l + 2 \right\rbrack}a^{\left\lbrack l + 1 \right\rbrack} + b^{\left\lbrack l + 2 \right\rbrack} + a^{\left\lbrack l\right\rbrack})\),其中\(z^{\left\lbrack l + 2 \right\rbrack} = W^{\left\lbrack l + 2 \right\rbrack}a^{\left\lbrack l + 1 \right\rbrack} + b^{\left\lbrack l + 2\right\rbrack}\)。注意一点,如果使用L2正则化或权重衰减,它会压缩\(W^{\left\lbrack l + 2\right\rbrack}\)的值。如果对\(b\)应用权重衰减也可达到同样的效果,尽管实际应用中,有时会对\(b\)应用权重衰减,有时不会。这里的\(W\)是关键项,如果\(W^{\left\lbrack l + 2 \right\rbrack} = 0\),为方便起见,假设\(b^{\left\lbrack l + 2 \right\rbrack} = 0\),这几项就没有了,因为它们(\(W^{\left\lbrack l + 2 \right\rbrack}a^{\left\lbrack l + 1 \right\rbrack} + b^{\left\lbrack l + 2\right\rbrack}\))的值为0。最后$ a^{\left\lbrack l + 2 \right\rbrack} = \ g\left( a^{[l]} \right) = a^{\left\lbrack l\right\rbrack}\(,因为假定使用**ReLU**激活函数,并且所有激活值都是非负的,\)g\left(a^{[l]} \right)\(是应用于非负数的**ReLU**函数,所以\)a^{[l+2]} =a^{[l]}$。
结果表明,残差块学习这个恒等式函数并不难,跳跃连接使很容易得出$ a^{\left\lbrack l + 2 \right\rbrack} = a^{\left\lbrack l\right\rbrack}\(。这意味着,即使给神经网络增加了这两层,它的效率也并不逊色于更简单的神经网络,因为学习恒等函数对它来说很简单。尽管它多了两层,也只把\)a{[l]}$的值赋值给$a$。所以给大型神经网络增加两层,不论是把残差块添加到神经网络的中间还是末端位置,都不会影响网络的表现。
当然,目标不仅仅是保持网络的效率,还要提升它的效率。想象一下,如果这些隐藏层单元学到一些有用信息,那么它可能比学习恒等函数表现得更好。而这些不含有残差块或跳跃连接的深度普通网络情况就不一样了,当网络不断加深时,就算是选用学习恒等函数的参数都很困难,所以很多层最后的表现不但没有更好,反而更糟。
认为残差网络起作用的主要原因就是这些残差块学习恒等函数非常容易,能确定网络性能不会受到影响,很多时候甚至可以提高效率,或者说至少不会降低网络的效率,因此创建类似残差网络可以提升网络性能。
除此之外,关于残差网络,另一个值得探讨的细节是,假设$ z^{\left\lbrack l + 2\right\rbrack}\(与\)a{[l]}$具有相同维度,所以**ResNets**使用了许多**same**卷积,所以这个$a$的维度等于这个输出层的维度。之所以能实现跳跃连接是因为same卷积保留了维度,所以很容易得出这个捷径连接,并输出这两个相同维度的向量。
如果输入和输出有不同维度,比如输入的维度是128,$ a^{\left\lbrack l + 2\right\rbrack}\(的维度是256,再增加一个矩阵,这里标记为\)W_{s}\(,\)W_{s}\(是一个256×128维度的矩阵,所以\)W_{s}a^{\left\lbrack l\right\rbrack}\(的维度是256,这个新增项是256维度的向量。不需要对\)W_{s}\(做任何操作,它是网络通过学习得到的矩阵或参数,它是一个固定矩阵,**padding**值为0,用0填充\)a^{[l]}$,其维度为256,所以者几个表达式都可以。
最后,来看看ResNets的图片识别。这些图片是从何凯明等人论文中截取的,这是一个普通网络,给它输入一张图片,它有多个卷积层,最后输出了一个Softmax。
如何把它转化为ResNets呢?只需要添加跳跃连接。这里只讨论几个细节,这个网络有很多层3×3卷积,而且它们大多都是same卷积,这就是添加等维特征向量的原因。所以这些都是卷积层,而不是全连接层,因为它们是same卷积,维度得以保留,这也解释了添加项$ z^{\left\lbrack l + 2 \right\rbrack} + a^{\left\lbrack l\right\rbrack}$(维度相同所以能够相加)。
ResNets类似于其它很多网络,也会有很多卷积层,其中偶尔会有池化层或类池化层的层。不论这些层是什么类型,都需要调整矩阵\(W_{s}\)的维度。普通网络和ResNets网络常用的结构是:卷积层-卷积层-卷积层-池化层-卷积层-卷积层-卷积层-池化层……依此重复。直到最后,有一个通过softmax进行预测的全连接层。
神经网络之卷积篇:详解残差网络为什么有用?(Why ResNets work?)的更多相关文章
- 基于双向BiLstm神经网络的中文分词详解及源码
基于双向BiLstm神经网络的中文分词详解及源码 基于双向BiLstm神经网络的中文分词详解及源码 1 标注序列 2 训练网络 3 Viterbi算法求解最优路径 4 keras代码讲解 最后 源代码 ...
- Dual Path Networks(DPN)——一种结合了ResNet和DenseNet优势的新型卷积网络结构。深度残差网络通过残差旁支通路再利用特征,但残差通道不善于探索新特征。密集连接网络通过密集连接通路探索新特征,但有高冗余度。
如何评价Dual Path Networks(DPN)? 论文链接:https://arxiv.org/pdf/1707.01629v1.pdf在ImagNet-1k数据集上,浅DPN超过了最好的Re ...
- PHP函数篇详解十进制、二进制、八进制和十六进制转换函数说明
PHP函数篇详解十进制.二进制.八进制和十六进制转换函数说明 作者: 字体:[增加 减小] 类型:转载 中文字符编码研究系列第一期,PHP函数篇详解十进制.二进制.八进制和十六进制互相转换函数说明 ...
- 走向DBA[MSSQL篇] 详解游标
原文:走向DBA[MSSQL篇] 详解游标 前篇回顾:上一篇虫子介绍了一些不常用的数据过滤方式,本篇详细介绍下游标. 概念 简单点说游标的作用就是存储一个结果集,并根据语法将这个结果集的数据逐条处理. ...
- Scala进阶之路-Scala函数篇详解
Scala进阶之路-Scala函数篇详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.传值调用和传名调用 /* @author :yinzhengjie Blog:http: ...
- 详解ResNet 网络,如何让网络变得更“深”了
摘要:残差网络(ResNet)的提出是为了解决深度神经网络的"退化"(优化)问题.ResNet 通过设计残差块结构,调整模型结构,让更深的模型能够有效训练更训练. 本文分享自华为云 ...
- 一文详解 WebSocket 网络协议
WebSocket 协议运行在TCP协议之上,与Http协议同属于应用层网络数据传输协议.WebSocket相比于Http协议最大的特点是:允许服务端主动向客户端推送数据(从而解决Http 1.1协议 ...
- Oracle10g数据泵impdp参数详解--摘自网络
Oracle10g数据泵impdp参数详解 2011-6-30 12:29:05 导入命令Impdp • ATTACH 连接到现有作业, 例如 ATTACH [=作业名]. • C ...
- 神经网络基础部件-BN层详解
一,数学基础 1.1,概率密度函数 1.2,正态分布 二,背景 2.1,如何理解 Internal Covariate Shift 2.2,Internal Covariate Shift 带来的问题 ...
- 残差网络(Residual Networks, ResNets)
1. 什么是残差(residual)? “残差在数理统计中是指实际观察值与估计值(拟合值)之间的差.”“如果回归模型正确的话, 我们可以将残差看作误差的观测值.” 更准确地,假设我们想要找一个 $x$ ...
随机推荐
- 在LCD上的任意位置显示一张任意大小的jpg图片
/************************************************* * * file name:lcdshowjpg.c * author :momolyl@126. ...
- SMU Summer 2024 Contest Round 2
SMU Summer 2024 Contest Round 2 Sierpinski carpet 题意 给一个整数 n ,输出对应的 \(3^n\times 3^n\) 的矩阵. 思路 \(n = ...
- Linux内核 自旋锁spin lock,教你如何用自旋锁让ubuntu死锁
背景 由于在多处理器环境中某些资源的有限性,有时需要互斥访问(mutual exclusion),这时候就需要引入锁的概念,只有获取了锁的任务才能够对资源进行访问,由于多线程的核心是CPU的时间分片, ...
- 【CMake系列】09-cmake install 一般文件 文件夹 代码文件
上一节,我们学习了项目构建后.目标的安装,本节学习的内容是 对于一般文件,文件夹以及源代码的安装 本节的文件依然使用 file(WRITE xxx.xx) 来创建,不依赖额外的文件 本专栏的实践代码全 ...
- Java中处理SocketException: Connection reset”异常的方法
Java中处理SocketException: Connection reset"异常的方法 在Java编程中,有时候我们会遇到java.net.SocketException: Conne ...
- Linux 主流桌面环境
GNOME KDE Xfce Ubuntu 使用 GNOME 作为桌面环境. 基于 KDE Plasma 开发的 Ubuntu 发行版:Kubuntu 基于 Xfce 开发的 Ubuntu 发行版:X ...
- docker高级篇2-分布式存储之三种算法
面试题: 1~2亿条数据需要缓存,请问如何设计这个缓存案例? 答:单机单台100%是不可能的.肯定是分布式缓存的.那么用Redis如何落地? 一般有三种方案: 哈希取余分区:一致性哈希算法分区:哈希槽 ...
- spm 一阶分析的Microtime onset应该如何填写?
1. 如果对数据进行了slice timing, 那么在进行一阶分析时应该修改microtime onset和 microtime resolution这两个参数, 假设数据的slice order= ...
- C# 模拟http请求出现 由于系统缓冲区空间不足或队列已满,不能执行套接字上的操作[windows服务器]
系统里面用到C#模拟Http请求,上线到服务器后,发现日志中大量出现"由于系统缓冲区空间不足或队列已满,不能执行套接字上的操作" 或"通常每个套接字地址(协议/网络地址/ ...
- AWS 认证
Data Analytics: 准备先Fundamental, 然后Udemy 上买课程,在看Exam Readiness, 然后小测试一下水平,看白皮书,最后不行就 Guru上再买课程 https: ...