Solution - AGC060B
简要题意:在 \(n \times m\) 的方格表中填入一些不超过 \(2^k-1\) 的数。考虑所有从左上角到右下角的最短路径,要求其中满足路径上数异或和为 \(0\) 的路径只有给定的 \(S\) 一条,问是否有解。
首先,变换看问题的角度:给定 \(n,m,S\),则 \(k\) 应该存在一个最小值,使得问题有解(或总是无解),所以这其实是一个组合最值问题。那么考虑两个方面:证明和构造。
证明部分,我们要尽可能的增大 \(k\),也就是增大所需的二进制位数。那么,考虑 \(S\) 的一个拐角,如图,红线表示 \(S\),蓝线表示一个调整。
这里拐角指的是红线的拐弯处斜向相邻的这个格,即图中蓝线唯一不同与红线的格。
将红线换为蓝线之后,只改变了两个格,那么由于蓝线不能异或和为 \(0\),所以这两个格至少有一位二进制不同。
这样的调整可以在若干个地方进行,设为 \(t\) 个,第 \(i\) 个调整会使路径的异或和改变 \(v_i\)。那么,不能有若干个 \(v_i\) 的异或和为 \(0\),即 \(v_i\) 是一个线性无关组。由于 \(v_i\) 定义在 \(k\) 位二进制数上,所以 \(t \le k\)。
但是,并不是每个拐角都可以调整。准确地说,不是所有拐角都可以一起调整。请看下图:
图中标出了三个拐角,但是显然不能同时做 \(1,2\) 的调整,也不能同时做 \(1,3\) 的调整。再思考一下可以发现,其实只有这样的一种情况是特殊的,也就是有一段经过两格的,连续的若干个两格只取一侧。
如此就可以算出 \(k\) 的下界,它其实就是一条路径能够经过的拐角数目的最大值,只是对于连续的两格比较特殊。
至于构造,思考到这里应该不太难了。方案如下:(想象一个人在表格中走,Ta要做一些决策)
对于一段长度大于等于 \(3\) 的直走,取新的一位,在这一段两端各添一个 \(1\)。这样可以使得走到这一段开头后必须走这一段结尾。
对于一些长度为 \(2\) 的直走,不妨设第一个 \(2\) 是竖向的,那么给每一段竖向的分配一个二进制位,在这两个格上添 \(1\)。然后取消两端由上一条添的位。
似乎说的不太清楚?上图。
在第二条规则下,有一些“必经之路”会被挡住,所以必须要经过所有安排的 \(1\)。
容易验证这个构造确实取到了前面证明的最值。
AGC 传统,思路难,代码易。请看 Code:
#include<bits/stdc++.h>
using namespace std;
int T,n,m,k,cnt,x,y,lstx,lsty;
//x,y跟着路径S跑
//lstx,lsty表示上一个选中的拐角
char s[65];
int main(){
scanf("%d",&T);
while(T--){
scanf("%d%d%d",&n,&m,&k);
scanf("%s",s+1);
cnt=0;x=y=lstx=lsty=1;
for(int i=1;i<n+m-2;i++){
if(s[i]=='D')x++;else y++;
if(s[i]!=s[i+1]){
if(s[i]=='D'&&lstx<=x-1&&lsty<=y+1)
cnt++,lstx=x-1,lsty=y+1;
if(s[i]=='R'&&lstx<=x+1&&lsty<=y-1)
cnt++,lstx=x+1,lsty=y-1;
}
}
printf(cnt<=k?"Yes\n":"No\n");
}
return 0;
}
Solution - AGC060B的更多相关文章
- Enterprise Solution 3.1 企业应用开发框架 .NET ERP/CRM/MIS 开发框架,C/S架构,SQL Server + ORM(LLBL Gen Pro) + Infragistics WinForms
行业:基于数据库的制造行业管理软件,包含ERP.MRP.CRM.MIS.MES等企业管理软件 数据库平台:SQL Server 2005或以上 系统架构:C/S 开发技术 序号 领域 技术 1 数据库 ...
- Enterprise Solution 开源项目资源汇总 Visual Studio Online 源代码托管 企业管理软件开发框架
Enterprise Solution 是一套管理软件开发框架,在这个框架基础上开发出一套企业资源计划系统Enterprise Edition. 现将Enterprise Solution开发过程中遇 ...
- Windows 10 部署Enterprise Solution 5.5
Windows 10正式版发布以后,新操作系统带来了许多的变化.现在新购买的电脑安装的系统应该是Windows 10.与当初用户不习惯Windows 7,购买新电脑后第一个想做的事情就是重装成XP,估 ...
- Enterprise Solution 企业资源计划管理软件 C/S架构,支持64位系统,企业全面应用集成,制造业信息化
Enterprise Solution是一套完整的企业资源计划系统,功能符合众多制造业客户要求.系统以.NET Framework技术作为开发架构,完善的功能可有效地帮助企业进行运营策划,减低成本,如 ...
- Dynamics CRM 2015-超大Solution导入问题
我们在将比较大的solution导入CRM的时候,经常会遇到超时的问题,这是因为CRM的本身的优化限制导致的,那么如何解决呢? 官方已经有了解决方案了. 在浏览完两种解决方法之后,我们要知道的是: 1 ...
- WATERHAMMER: A COMPLEX PHENOMENON WITH A SIMPLE SOLUTION
开启阅读模式 WATERHAMMER A COMPLEX PHENOMENON WITH A SIMPLE SOLUTION Waterhammer is an impact load that is ...
- Codility NumberSolitaire Solution
1.题目: A game for one player is played on a board consisting of N consecutive squares, numbered from ...
- codility flags solution
How to solve this HARD issue 1. Problem: A non-empty zero-indexed array A consisting of N integers i ...
- The Solution of UESTC 2016 Summer Training #1 Div.2 Problem C
Link http://acm.hust.edu.cn/vjudge/contest/121539#problem/C Description standard input/output After ...
- The Solution of UESTC 2016 Summer Training #1 Div.2 Problem B
Link http://acm.hust.edu.cn/vjudge/contest/121539#problem/B Description standard input/output Althou ...
随机推荐
- linux下firefox用css配置把网页设置成黑白
网址输入 about:config 忽略警告 toolkit.legacyUserProfileCustomizations.stylesheets设置为true 在 /home/user/.mozi ...
- Java,substring( )方法
该方法可以获取一个String字符串的(x,y)个字符. 其中x和y是左闭右开的,左边的可以取到,右边的取不到,并且索引从0开始. 例如 1 String text = "reliableY ...
- ASCII编码的全面介绍
1. ASCII编码的定义和历史 ASCII(American Standard Code for Information Interchange)是一种用于将文本字符转换为数字编码的标准,最初由美国 ...
- 12 JavaScript 关于eval函数
12 eval函数 eval本身在js里面正常情况下使用的并不多. 但是很多网站会利用eval的特性来完成反爬操作. 我们来看看eval是个什么鬼? 从功能上讲, eval非常简单. 它和python ...
- 战码先锋直播预告丨参与ArkUI,共建OpenHarmony繁荣生态
OpenAtom OpenHarmony(以下简称"OpenHarmony")工作委员会首度发起「OpenHarmony开源贡献者计划」,旨在鼓励开发者参与OpenHarmony开 ...
- 本周四晚19:00知识赋能第八期第2课丨ArkUI自定义组件
9月21日19:00~20:00,第八期知识赋能第2节直播就要开始啦!本次直播将为同学们带来涂鸦小游戏的趣味体验,让大家全面了解ArkUI框架的应用,帮助你们在自己已有专业的基础上拓宽知识边界,学习 ...
- CircleIndicator组件,使指示器风格更加多样化
UI界面是应用程序可视化必不可少的部分.设计精致的UI界面可以使得整个可视化应用程序给用户留下深刻的印象,是改善用户界面体验最直接的方式. ArkUI开发框架为开发者提供了丰富的UI原生组件,如Nav ...
- SQline安装
SQLite 安装 SQLite 的一个重要的特性是零配置的,这意味着不需要复杂的安装或管理.本章将讲解 Windows.Linux 和 Mac OS X 上的安装设置. 在 Windows 上安装 ...
- 攻防世界 debug
题目 分析过程 丢到PE里面 一开始,我看到下面的脱壳提示,以为是我没见过的壳,下载了相关工具脱壳--发现脱了后又出现没见过的脱壳提示,根据提示脱壳弄出来的东西怪怪的 卡题,查了资料 学到一个新知识点 ...
- 1、android Studio 打Jar包
1.创建一个AndroidStudio 工程 注意下面这个Package Name 2.进入Android Studio工程中 选择Project Flies 选项 然后找到 app->src- ...