题目链接

题目

题目描述

小H给你一个数组 \(a\) ,要求支持以下两种操作:

  1. 0 l r \((1 \leq l \leq r \leq n)\),询问区间 \([l,r]\) 中权值和最大的有效子区间的权值和,一个子区间被认为是有效的当且仅当这个子区间中没有两个相邻的偶数或者奇数。

  2. 1 x v \((1 \leq x \leq n,-10^9 \leq v \leq 10^9)\) ,将 \(a[x]\) 的值修改为 \(v\) 。

输入描述

第一行读入两个正整数 \(n,m(1 \leq n,m \leq 10^5)\) 第二行读入 \(n\) 个整数,第 \(i\) 个表示 \(a[i](-10^9 \leq a[i] \leq 10^9)\) 接下来 \(m\) 行,每行三个数表示操作,描述见题目描述。

输出描述

输出每个询问的答案。

示例1

输入

10 10
-9 -8 -8 -8 2 -7 -5 2 2 3
0 3 5
0 4 4
0 2 4
1 6 6
1 1 6
1 5 9
0 1 2
1 5 -8
0 2 4
1 3 -2

输出

2
-8
-8
6
-8

题解

知识点:线段树。

见到这种连续段最大值的,先维护三个信息,区间有效最大值 \(mx\) 、区间左端点开始的有效最大值 \(lmx\) 、区间右端点开始的有效最大值 \(rmx\) ,用以维护合并。

继续考虑,合并需要端点的奇偶性相反才可行,因此需要维护左端点奇偶性 \(lodd\) 、右端点奇偶性 \(rodd\) 。

同时,考虑到 \(lmx,rmx\) 合并时会出现跨越两段的情况,需要再维护一个区间权值和 \(sum\) 。当左右可跨越时,可以用 \(lmx\) 与左子区间 \(sum\) 加 右子区间 \(lmx\) 取最大值, \(rmx\) 同理。需要注意, \(sum\) 不能用 \(lmx,rmx\) 替代,因为权值是有正有负的, \(sum\) 不一定是 \(lmx,rmx\) ,必须多维护一个 \(sum\) 。

对于 \(sum\) ,我们还需要来判断整个区间是否为有效区间,从而判断 \(sum\) 是否可用。为了少设一个变量保存区间是否整个有效(当然设了也行,写起来容易点),我们设 \(sum\) 初值为极小值 \(-10^{18}\) 的表示无效值,更新时取 \(sum\) 与左右子区间的 \(sum\) 的和的最大值即可。显然,左右子区间存在一个无效值,则区间的值一定无效。

因此,区间信息要维护 \(mx,lmx,rmx,lodd,rodd,sum\) 。

合并时, \(lodd,rodd\) 直接继承即可,接下来分两步:

  1. \(mx\) 取左右子区间 \(mx\) 的最大值, \(lmx,rmx\) 直接继承。

  2. 若左子区间 \(rodd\) 和右子区间 \(lodd\) 不同,则在第一步的基础上考虑跨越两段的情况。

    \(mx\) 需要再与左子区间 \(rmx\) 加右子区间 \(lmx\) 的和取最大值。

    \(lmx,rmx\) 考虑特殊情况,已经在考虑维护信息的时候分析过了。

    \(sum\) 也分析过了。

修改时,直接修改即可,过程非常朴素,就不讲了。

另外,由于线段树结构的问题,我需要多加一个表示区间是否存在的 \(exist\) 以用来合并无效区间时特判,这个完全可以用先判断后递归避免,但是我懒23333。

时间复杂度 \(O((n+m) \log n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
using namespace std;
using ll = long long; struct T {
bool exist = 0; // 区间是否存在
ll mx = -1e18; // 有效区间最大值
ll sum = -1e18; // 区间权值和(区间权值和不能用 lmx,rmx 替代)
bool lodd = 0, rodd = 0; // 左/右端点的奇偶性
ll lmx = -1e18, rmx = -1e18; // 从左/右端点出发的最大值
friend T operator+(const T &a, const T &b) {
if (!a.exist) return b;
if (!b.exist) return a;
T x = T();
x.exist = 1;
x.mx = max(a.mx, b.mx);
x.lodd = a.lodd, x.rodd = b.rodd;
x.lmx = a.lmx, x.rmx = b.rmx;
if (a.rodd ^ b.lodd) {
x.mx = max(x.mx, a.rmx + b.lmx);
x.sum = max(x.sum, a.sum + b.sum); // 取最大值,防止溢出
x.lmx = max(x.lmx, a.sum + b.lmx);
x.rmx = max(x.rmx, a.rmx + b.sum);
}
return x;
}
};
struct F {
ll upd;
T operator()(const T &x) {
return{
1,
upd,
upd,
(bool)(upd % 2),(bool)(upd % 2),
upd,upd,
};
}
}; template<class T, class F>
class SegmentTree {
int n;
vector<T> node; void update(int rt, int l, int r, int x, F f) {
if (r < x || x < l) return;
if (l == r) return node[rt] = f(node[rt]), void();
int mid = l + r >> 1;
update(rt << 1, l, mid, x, f);
update(rt << 1 | 1, mid + 1, r, x, f);
node[rt] = node[rt << 1] + node[rt << 1 | 1];
} T query(int rt, int l, int r, int x, int y) {
if (r < x || y < l) return T();
if (x <= l && r <= y) return node[rt];
int mid = l + r >> 1;
return query(rt << 1, l, mid, x, y) + query(rt << 1 | 1, mid + 1, r, x, y);
} public:
SegmentTree(const vector<T> &src) { init(src); } void init(const vector<T> &src) {
assert(src.size() >= 2);
n = src.size() - 1;
node.assign(n << 2, T());
function<void(int, int, int)> build = [&](int rt, int l, int r) {
if (l == r) return node[rt] = src[l], void();
int mid = l + r >> 1;
build(rt << 1, l, mid);
build(rt << 1 | 1, mid + 1, r);
node[rt] = node[rt << 1] + node[rt << 1 | 1];
};
build(1, 1, n);
} void update(int x, F f) { update(1, 1, n, x, f); } T query(int x, int y) { return query(1, 1, n, x, y); }
}; int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n, m;
cin >> n >> m;
vector<T> a(n + 1);
for (int i = 1;i <= n;i++) {
int x;
cin >> x;
a[i] = {
1,
x,
x,
(bool)(x % 2),(bool)(x % 2),
x,x,
};
}
SegmentTree<T, F> sgt(a);
while (m--) {
int op;
cin >> op;
if (op == 0) {
int l, r;
cin >> l >> r;
cout << sgt.query(l, r).mx << '\n';
}
else {
int x, v;
cin >> x >> v;
sgt.update(x, { v });
}
}
return 0;
}

NC15162 小H的询问的更多相关文章

  1. Wannafly挑战赛10 D 小H的询问(线段树)

    题目链接  Problem D 这个题类似 SPOJ GSS3 做过那个题之后其实就可以秒掉这题了. 考虑当前线段树维护的结点 在那道题的基础上,这个题要多维护几个东西,大概就是左端点的奇偶性,右端点 ...

  2. BZOJ 3781: 小B的询问

    3781: 小B的询问 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 643  Solved: 435[Submit][Status][Discuss ...

  3. hihocoder 1347 小h的树上的朋友

    传送门 时间限制:18000ms单点时限:2000ms内存限制:512MB 描述 小h拥有$n$位朋友.每位朋友拥有一个数值$V_i$代表他与小h的亲密度.亲密度有可能发生变化.岁月流逝,小h的朋友们 ...

  4. Bzoj 3781: 小B的询问 莫队,分块,暴力

    3781: 小B的询问 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 426  Solved: 284[Submit][Status][Discuss ...

  5. 2018.07.01 洛谷小B的询问(莫队)

    P2709 小B的询问 题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数 ...

  6. 小H和密码

    链接:https://www.nowcoder.com/acm/contest/72/B来源:牛客网 题目描述     小H在击败怪兽后,被一个密码锁挡住了去路     密码锁由N个转盘组成,编号为1 ...

  7. AC日记——小B的询问 洛谷 P2709

    小B的询问 思路: 水题: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 50005 #define ll ...

  8. BZOJ_3781_小B的询问_莫队

    BZOJ_3781_小B的询问_莫队 Description 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值 ...

  9. hihocoder-1347 小h的树上的朋友(lca+线段树)

    题目链接: 小h的树上的朋友 时间限制:18000ms 单点时限:2000ms 内存限制:512MB 描述 小h拥有n位朋友.每位朋友拥有一个数值Vi代表他与小h的亲密度.亲密度有可能发生变化. 岁月 ...

  10. 洛谷——P2709 小B的询问

    P2709 小B的询问 莫队算法,弄两个指针乱搞即可 这应该是基础莫队了吧 $x^2$可以拆成$((x-1)+1)^2$,也就是$(x-1)^2+1^2+2\times (x-1)$,那么如果一个数字 ...

随机推荐

  1. 入门 shell 从脚本开始 - lazy_find

    编写脚本实现在指定文件路径下查找文件夹或文件名.   脚本如下: #!/bin/sh # lazy find # GNU All-Permissive License # Copying and di ...

  2. GO 指针数据类型的使用

    转载请注明出处: 在Go语言中,指针类型允许直接访问和修改某个变量的内存地址.通过使用指针,我们可以在函数之间共享数据或者在函数内部修改外部变量的值. 以下是关于Go语言指针类型的一些重要语法和示例: ...

  3. 问题--flask无法发邮件,无法登录

    1.问题 早上测试项目的时候,一直无法正确发送邮件,无法接收,但是查不出原因是什么 2.解决 改变了一下思路,去登录了不需要邮件验证码的用户,发现错误 这个错误提示是一个数据库连接错误,表明应用程序无 ...

  4. 【TouchGFX 】使用 CubeMX 创建 TouchGFX 工程时 LCD 死活不显示

    生成的代码死活无法让LCD显示,经两个晚上的分析验证是LTDC_CLK引脚速度设置为低速导致,经测试中速.高速.超高速都正常,真是冤,聊以此以示纪念

  5. [转帖]如何查看Docker容器环境变量,如何向容器传递环境变量

    https://www.cnblogs.com/larrydpk/p/13437535.html 1 前言 欢迎访问南瓜慢说 www.pkslow.com获取更多精彩文章! 了解Docker容器的运行 ...

  6. iptables 命令学习

    iptables 命令学习 摘要 Linux 早起版本使用netfilter进行数据包过滤. 最新的版本开始改用 ebpf的方式进行内核编程式的包过滤. netfilter 可以理解为内核态的一个处理 ...

  7. [换帖]Linux命令之iconv命令

    一.命令简介   日常工作中我们需要将windows生成的文件上传到Linux系统,有时候会因为编码问题出现显示乱码.例如我上传了一个csv文件到Linux服务器上,默认编码为GB2312,在Linu ...

  8. Springboot下micrometer+prometheus+grafana进行JVM监控的操作过程

    Springboot下micrometer+prometheus+grafana进行JVM监控的操作过程 背景 同事今天提交了一个补丁. 给基于Springboot的产品增加了micrometer等收 ...

  9. 袋鼠云数栈产品中 AI+ 实现原理剖析

    生产力工具 + AI 是不可逆转的趋势,慢慢的大模型能力通过 AI Agent 落地的工程化能力也开始趋于成熟.作为大数据产品的数栈也必然是需要借助 AI 能力提升产品竞争力. 去年 12 月,我们在 ...

  10. 分布式事务和Spanner分布式数据库

    一.分布式事务 首先事务可以这么理解:程序员有一些不同的操作,或许针对数据库不同的记录,他们希望所有这些操作作为一个整体,不会因为失败而被分割,也不会被其他活动看到中间状态.事务处理系统要求程序员对这 ...