Envoy 源码分析--event

申明:本文的 Envoy 源码分析基于 Envoy1.10.0。

Envoy 的事件是复用了 libevent 的 event_base 。其在代码中的表现就是类 Dispatcher,一个 Dispatcher 其实就是一个 event_loop,主要的核心功能有:网络事件处理,定时器,信号处理,任务队列,代码对象的析构等。下面是相关的类图。

ImplBase 包含了 libevent 的事件类型,对象在析构时会自动调用 event_delImplBase 派生出 FileEventImplSignalEventImplTimerImpl 三种类型的事件。 RealTimeSystem 在创建调度后,会创建一个线程局部存储(TLS)的时间队列。DispatchedThreadImpl 包含了 DispatcherImpl 在启动时会创建一条线程,然后启动一个 event_loop,同时在 event_loop 外层包了个 guard_dog 防止死锁。

libevent

Envoy 是 C++ 的,而 libevent 是个 C 库,这就需要自动管理 C 结构的内存。 Envoy 通过继承智能指针 unique_ptr 来重新封装了 libevent 的结构体。

template <class T, void (*deleter)(T*)> class CSmartPtr : public std::unique_ptr<T, void (*)(T*)> {
public:
CSmartPtr() : std::unique_ptr<T, void (*)(T*)>(nullptr, deleter) {}
CSmartPtr(T* object) : std::unique_ptr<T, void (*)(T*)>(object, deleter) {}
};

然后使用 CSmartPtr 就可以自动管理 libevent 的结构体。使用方式如下:

struct event_base;
extern "C" {
void event_base_free(event_base*);
} struct evbuffer;
extern "C" {
void evbuffer_free(evbuffer*);
} struct bufferevent;
extern "C" {
void bufferevent_free(bufferevent*);
} struct evconnlistener;
extern "C" {
void evconnlistener_free(evconnlistener*);
} typedef CSmartPtr<event_base, event_base_free> BasePtr;
typedef CSmartPtr<evbuffer, evbuffer_free> BufferPtr;
typedef CSmartPtr<bufferevent, bufferevent_free> BufferEventPtr;
typedef CSmartPtr<evconnlistener, evconnlistener_free> ListenerPtr;

这样 libevent 的结构体就变成了 C++ 的智能指针。

Envoy 有三种事件都是 event 类型,我们需要对事件类型进行抽象,自动管理事件的释放。Envoy 将 event 作为 ImplBase的成员,在类析构进自动释放,所有事件只要继承 ImplBase 就完成了事件的自动管理。

class ImplBase {
protected:
~ImplBase(); event raw_event_;
}; ImplBase::~ImplBase() {
event_del(&raw_event_);
}

Timer

Timer 只有两接口一个用于启动,另一个用于关闭。

class Timer {
public:
virtual ~Timer() {}
virtual void disableTimer() PURE;
virtual void enableTimer(const std::chrono::milliseconds& d) PURE;
};

创建 Timer 时,会在构造函数内进行初始化。enableTimer 时调用 event_add 加入事件。 disableTimer 时调用 event_del 删除事件。

TimerImpl::TimerImpl(Libevent::BasePtr& libevent, TimerCb cb) : cb_(cb) {
ASSERT(cb_);
evtimer_assign(
&raw_event_, libevent.get(),
[](evutil_socket_t, short, void* arg) -> void { static_cast<TimerImpl*>(arg)->cb_(); }, this);
} void TimerImpl::disableTimer() { event_del(&raw_event_); } void TimerImpl::enableTimer(const std::chrono::milliseconds& d) {
if (d.count() == 0) {
event_active(&raw_event_, EV_TIMEOUT, 0);
} else {
// TODO(#4332): use duration_cast more nicely to clean up this code.
std::chrono::microseconds us = std::chrono::duration_cast<std::chrono::microseconds>(d);
timeval tv;
tv.tv_sec = us.count() / 1000000;
tv.tv_usec = us.count() % 1000000;
event_add(&raw_event_, &tv);
}
}

SignalEvent

SignalEvent 比较简单在构造函数时,直接初始化并加入事件。

SignalEventImpl::SignalEventImpl(DispatcherImpl& dispatcher, int signal_num, SignalCb cb)
: cb_(cb) {
evsignal_assign(
&raw_event_, &dispatcher.base(), signal_num,
[](evutil_socket_t, short, void* arg) -> void { static_cast<SignalEventImpl*>(arg)->cb_(); },
this);
evsignal_add(&raw_event_, nullptr);
}

FileEvent

文件相关的事件封装为 FileEvent。我们知道 linux 中 socket 也是一个文件,因此 socket 套接字相关的事件也属于 FileEvent。FileEvent 使用持久性事件假定用户一直读或写,直到收到 EAGAIN。

FileEvent 提供两个接口。activate 无论事件是否准备就绪,此方法都会主动触发事件,典型场景:socket 读写事件, EventLoop 唤醒等。setEnabled 用于设置事件。

class FileEvent {
public:
virtual ~FileEvent() {}
virtual void activate(uint32_t events) PURE;
virtual void setEnabled(uint32_t events) PURE;
};

RealTimeSystem

RealTimeSystem 暴露三个接口。

class RealTimeSystem : public TimeSystem {
public:
SchedulerPtr createScheduler(Libevent::BasePtr&) override;
SystemTime systemTime() override { return time_source_.systemTime(); }
MonotonicTime monotonicTime() override { return time_source_.monotonicTime(); } private:
RealTimeSource time_source_;
}
  • systemTime 返回系统时间。调用的是 std::chrono 的 system_clock。
  • monotonicTime 返回的是系统的启动时间。即 linux 命令 uptime 上的启动时间。用于时间间隔,不会受系统修改时间的影响。调用的是 std::chrono 的 steady_clock。
  • createScheduler 创建一个计时器工厂(factory模式)。间接启用线程本地计时器队列管理,因此每个线程具有单独的计时器。 RealScheduler 类放在源文件中,外部无法调用。
//创建计时器工厂
SchedulerPtr RealTimeSystem::createScheduler(Libevent::BasePtr& libevent) {
return std::make_unique<RealScheduler>(libevent);
} class RealScheduler : public Scheduler {
public:
RealScheduler(Libevent::BasePtr& libevent) : libevent_(libevent) {}
//创建一个本地计时器
TimerPtr createTimer(const TimerCb& cb) override {
return std::make_unique<TimerImpl>(libevent_, cb);
}; private:
Libevent::BasePtr& libevent_;
};

任务队列

Dispatcher 内部创建了一个任务队列,将所有的 callback 加入队列。同时创建一个 Timer 调用一个函数,函数内循环处理。

post 方法将传进来的 callback 加入到任务任务。如果加入前的队列为空就需要触发定时器。post_timer_ 在构造函数内已设置好其对应的函数,调用 runPostCallbacks

void DispatcherImpl::post(std::function<void()> callback) {
bool do_post;
{
Thread::LockGuard lock(post_lock_);
do_post = post_callbacks_.empty();
post_callbacks_.push_back(callback);
} if (do_post) {
post_timer_->enableTimer(std::chrono::milliseconds(0));
}
} DispatcherImpl::DispatcherImpl(TimeSystem& time_system, Buffer::WatermarkFactoryPtr&& factory,
Api::Api& api)
: ...
post_timer_(createTimer([this]() -> void { runPostCallbacks(); })),
current_to_delete_(&to_delete_1_) {
RELEASE_ASSERT(Libevent::Global::initialized(), "");
}

runPostCallbacks 是一个死循环,每次取一个 callback 进行处理。直到队列为空跳出循环。从这可以看出 post 进来的任务,如果在加入前队列为空的话,runPostCallbacks 已退出,因此需要重新触发 post_timer_

void DispatcherImpl::runPostCallbacks() {
while (true) {
std::function<void()> callback;
{
Thread::LockGuard lock(post_lock_);
if (post_callbacks_.empty()) {
return;
}
callback = post_callbacks_.front();
post_callbacks_.pop_front();
}
callback();
}
}

延迟析构

延迟析构指的是将 unique_ptr 的对象的析构的动作交由 Dispatcher 来完成。 DeferredDeletable 是个空接口,所有析构的对象都要继承 DeferredDeletable

class DeferredDeletable {
public:
virtual ~DeferredDeletable() {}
}; typedef std::unique_ptr<DeferredDeletable> DeferredDeletablePtr;

Dispatcher 对象保存了所有要延迟析构的对象

std::vector<DeferredDeletablePtr> to_delete_1_;
std::vector<DeferredDeletablePtr> to_delete_2_;
std::vector<DeferredDeletablePtr>* current_to_delete_;

to_delete_1_to_delete_2 保存了析构的对象,current_to_delete_ 指针当前要析构的对象。加入延迟析构对象时,如果当前的析构对象长度为 1,deferred_delete_timer_ 就会被触发。

void DispatcherImpl::deferredDelete(DeferredDeletablePtr&& to_delete) {
ASSERT(isThreadSafe());
current_to_delete_->emplace_back(std::move(to_delete));
ENVOY_LOG(trace, "item added to deferred deletion list (size={})", current_to_delete_->size());
if (1 == current_to_delete_->size()) {
deferred_delete_timer_->enableTimer(std::chrono::milliseconds(0));
}
}

deferred_delete_timer_ 是在构造函数内已构造好回调函数 clearDeferredDeleteListclearDeferredDeleteListcurrent_to_delete_始终指向当前正要析构的对象列表,每次执行完析构后就指向另外一个对象列表,来回交替。

void DispatcherImpl::clearDeferredDeleteList() {
ASSERT(isThreadSafe());
std::vector<DeferredDeletablePtr>* to_delete = current_to_delete_; size_t num_to_delete = to_delete->size();
if (deferred_deleting_ || !num_to_delete) {
return;
} ENVOY_LOG(trace, "clearing deferred deletion list (size={})", num_to_delete); if (current_to_delete_ == &to_delete_1_) {
current_to_delete_ = &to_delete_2_;
} else {
current_to_delete_ = &to_delete_1_;
} deferred_deleting_ = true; for (size_t i = 0; i < num_to_delete; i++) {
(*to_delete)[i].reset();
} to_delete->clear();
deferred_deleting_ = false;
}

可以看出延迟析构的原理和任务队列原理差不多。

为何要延迟析构以及析构时为何需要两个队列,可参考:https://yq.aliyun.com/articles/659277

dispacth_thread

dispacth_thread 只是一个简单的 event_loop 线程,不支持像接收新连接那样的工作线程。 接口很简单,在启动时,启动一个新线程,在新线程中调用 dispatch run 执行 event_loop。同时会新建一个 GuardDog 监控线程是否死锁。

void DispatchedThreadImpl::start(Server::GuardDog& guard_dog) {
thread_ =
api_.threadFactory().createThread([this, &guard_dog]() -> void { threadRoutine(guard_dog); });
} void DispatchedThreadImpl::threadRoutine(Server::GuardDog& guard_dog) {
ENVOY_LOG(debug, "dispatched thread entering dispatch loop");
auto watchdog = guard_dog.createWatchDog(api_.threadFactory().currentThreadId());
watchdog->startWatchdog(*dispatcher_);
dispatcher_->run(Dispatcher::RunType::Block);
ENVOY_LOG(debug, "dispatched thread exited dispatch loop");
guard_dog.stopWatching(watchdog); watchdog.reset();
dispatcher_.reset();
}

参考文档: https://yq.aliyun.com/articles/659277

Envoy 源码分析--event的更多相关文章

  1. Envoy 源码分析--network

    目录 Envoy 源码分析--network address Instance DNS cidr socket Option Socket ListenSocket ConnectionSocket ...

  2. Envoy 源码分析--程序启动过程

    目录 Envoy 源码分析--程序启动过程 初始化 main 入口 MainCommon 初始化 服务 InstanceImpl 初始化 启动 main 启动入口 服务启动流程 LDS 服务启动流程 ...

  3. Envoy 源码分析--LDS

    Envoy 源码分析--LDS LDS 是 Envoy 用来自动获取 listener 的 API. Envoy 通过 API 可以增加.修改或删除 listener. 先来总结下 listener ...

  4. Envoy 源码分析--network L4 filter manager

    目录 Envoy 源码分析--network L4 filter manager FilterManagerImpl addWriteFilter addReadFilter addFilter in ...

  5. Envoy 源码分析--buffer

    目录 Envoy 源码分析--buffer BufferFragment RawSlice Slice OwnedSlice SliceDeque UnownedSlice OwnedImpl Wat ...

  6. Zepto源码分析-event模块

    源码注释 // Zepto.js // (c) 2010-2015 Thomas Fuchs // Zepto.js may be freely distributed under the MIT l ...

  7. nginx源码分析——event模块

    源码:nginx 1.12.0   一.简介      nginx是一款非常受欢迎的软件,具备高性能.模块化可定制的良好特性.之前写了一篇nginx的http模块分析的文章,主要对http处理模块进行 ...

  8. Libevent源码分析—event, event_base

    event和event_base是libevent的两个核心结构体,分别是反应堆模式中的Event和Reactor.源码分别位于event.h和event-internal.h中 1.event: s ...

  9. jQuery源码分析--Event模块(2)

    接下来就是触发事件了.事件触发后的处理函数的分发主要靠两个函数,一个jQuery.event.dispatch,一个是jQuery.event.handlers.这个dispatch会调用handle ...

随机推荐

  1. day19 python之re模块正则练习

    1.匹配标签 import re ret = re.search("<(?P<tag_name>\w+)>\w+</(?P=tag_name)>" ...

  2. 大兄dei,早点看清this吧

    说道this,可以说是前端中很重要的问题之一了,也是面试或者笔试常考的问题.所以还是早点看清this吧,大兄dei. this是什么?为什么要存在? this关键字是js中最最复杂的机制之一.他被自动 ...

  3. h5页面实战——与andriod和ios的交互

    首先需要我们h5页面需要做一些匹配.比如:如何判断当前手机是andriod还是ios, andriod攻城狮和ios工程师,一般会定义事件的方法.我们套用他们方法就可以了. 那么为什么我要写这个随笔呢 ...

  4. mysql知识点汇总

    1. 数据库的安装 2. 数据库设计需要注意什么 3. SQL语句优化 4. 怎样处理慢查询? 5. 怎样更好的利用数据库索引? 6. 事务隔离级别有哪些?怎么实现的? 7. 数据库锁有哪些? 8. ...

  5. Linux can双机通信(2440+MCP2515 && 51+SJA1000)

    2012-01-12 22:43:24 上图: 自收发成功完成后,那么双机通信就比较容易了.关键就是CAN波特率.ID标识.滤波设置正确即可双机通信了.

  6. python简单制作GIF

    第一步安装工具:imageio (已安装好的页面) 第二步:打开python 插入代码,代码如下. import imageio savename = "C://Users//Thinkpa ...

  7. BZOJ 3473 字符串

    思路 广义SAM的题目,先全部插入,然后每个字符串在SAM上匹配,如果发现当前sz小于k(就是前缀不满足条件),就跳fail(找前缀的后缀,就是找子串)到满足条件为止,然后一个满足条件的节点,它的所有 ...

  8. [math]本博客已经支持书写数学公式

    本博客已经支持mathjax格式公式 使用方法 使用方法单美元符号加单行公式. 使用方法双美元符号加多行公式. 展示 单行公式:\(x^2+2x+1=0\) 多行公式:\[x=\frac{{-b}\p ...

  9. enum & json 之间的转换

    enum 转为 string:EnumMember & StringEnumConverter public enum CampaignStatus : Int32 { [EnumMember ...

  10. 动态生成具有嵌套属性的linq选择(select)

    class SelectItem { public string Item { get; set; } } class SelectList { public int ID { get; set; } ...