摘录:OSGeo中国中心 http://www.osgeo.cn/post/ae457

计算机的出现使得很多原本十分繁琐的工作得以大幅度简化,但是也有一些在人们直观看来很容易的问题却需要拿出一套并不简单的通用解决方案,比如几何问题。在本文中,我们将对计算几何常用的基本算法做一个全面的介绍,希望对您了解并应用计算几何的知识解决问题起到帮助。

矢量的概念

如果一条线段的端点是有次序之分的,我们把这种线段成为有向线段(directed segment)。如果有向线段p1p2的起点p1在坐标原点,我们可以把它称为矢量(vector)p2。

矢量加减法

设二维矢量P = ( x1,y1 ),Q = ( x2 ,y2 ),则矢量加法定义为: P + Q = ( x1 + x2 , y1 + y2 ),同样的,矢量减法定义为: P - Q =( x1 - x2 , y1 - y2 )。显然有性质 P + Q = Q + P , P - Q = - ( Q - P )。

矢量叉积

计算矢量叉积是与直线和线段相关算法的核心部分。设矢量P =(x1,y1),Q = (x2,y2),则矢量叉积定义为由(0,0)、p1、p2和p1+p2所组成的平行四边形的带符号的面积,即:P× Q = x1y2 - x2y1,其结果是一个标量。显然有性质 P× Q = - ( Q× P )和 P× ( - Q ) = - ( P× Q )。一般在不加说明的情况下,本文下述算法中所有的点都看作矢量,两点的加减法就是矢量相加减,而点的乘法则看作矢量叉积。

叉积的一个非常重要性质是可以通过它的符号判断两矢量相互之间的顺逆时针关系:

若 P× Q > 0 ,则P在Q的顺时针方向。若 P × Q < 0 ,则P在Q的逆时针方向。若 P × Q = 0 ,则P与Q共线,但可能同向也可能反向。

折线段的拐向判断

折线段的拐向判断方法可以直接由矢量叉积的性质推出。对于有公共端点的线段p0p1和p1p2,通过计算(p2 - p0) × (p1 - p0)的符号便可以确定折线段的拐向:

若(p2 - p0)× (p1 - p0) > 0,则p0p1在p1点拐向右侧后得到p1p2。

若(p2 - p0)× (p1 - p0) < 0,则p0p1在p1点拐向左侧后得到p1p2。

若(p2 - p0)× (p1 - p0) = 0,则p0、p1、p2三点共线。

判断点是否在线段上

设 点为Q,线段为P1P2,判断点Q在该线段上的依据是:( Q- P1 )× ( P2 - P1 ) = 0且 Q在以 P1,P2为对角顶点的矩形内。前者保证Q点在直线P1P2上,后者是保证Q点不在线段P1P2的延长线或反向延长线上,对于这一步骤的判断可以用以下过 程实现:

ON-SEGMENT(pi,pj,pk)

if min(xi,xj)<=xk<=max(xi,xj) andmin(yi,yj)<=yk<=max(yi,yj)

then return true;

else return false;

特别要注意的是,由于需要考虑水平线段和垂直线段两种特殊情况,min(xi,xj)<=xk<=max(xi,xj)和min(yi,yj)<=yk<=max(yi,yj)两个条件必须同时满足才能返回真值。

判断两线段是否相交

我们分两步确定两条线段是否相交:

(1)快速排斥试验

设以线段 P1P2为对角线的矩形为R,设以线段 Q1Q2 为对角线的矩形为T,如果R和T不相交,显然两线段不会相交。

(2)跨立试验如果两线段相交,则两线段必然相互跨立对方。若P1P2跨立Q1Q2,则矢量 ( P1 - Q1 )和( P2 - Q1 )位于矢量( Q2 - Q1 )的两侧,即( P1 - Q1 )× ( Q2 - Q1 ) * ( P2 - Q1 )× ( Q2 - Q1 ) < 0。上式可改写成( P1 -Q1 )× ( Q2 - Q1 ) * ( Q2 - Q1 )× ( P2 - Q1 ) > 0。当 ( P1 - Q1)× ( Q2 - Q1 ) = 0时,说明 ( P1 - Q1 )和 ( Q2 - Q1 )共线,但是因为已经通过快速排斥试验,所以 P1一定在线段 Q1Q2上;同理,( Q2 - Q1 )×(P2 - Q1 ) = 0说明 P2一定在线段 Q1Q2上。所以判断P1P2跨立Q1Q2的依据是:( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 )× ( P2 - Q1 ) >= 0。同理判断Q1Q2跨立P1P2的依据是:( Q1 -P1 ) × ( P2 - P1 ) * ( P2 - P1 )× ( Q2 - P1 ) >= 0。具体情况如下图所示:

在相同的原理下,对此算法的具体的实现细节可能会与此有所不同,除了这种过程外,大家也可以参考《算法导论》上的实现。

判断线段和直线是否相交

有了上面的基础,这个算法就很容易了。如果线段P1P2和直线Q1Q2相交,则P1P2跨立Q1Q2,即:( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 )× ( P2 - Q1 ) >= 0。

判断矩形是否包含点

只要判断该点的横坐标和纵坐标是否夹在矩形的左右边和上下边之间。

判断线段、折线、多边形是否在矩形中

因为矩形是个凸集,所以只要判断所有端点是否都在矩形中就可以了。

判断矩形是否在矩形中

只要比较左右边界和上下边界就可以了。

判断圆是否在矩形中

很容易证明,圆在矩形中的充要条件是:圆心在矩形中且圆的半径小于等于圆心到矩形四边的距离的最小值。

判断点是否在多边形中

判断点P是否在多边形中是计算几何中一个非常基本但是十分重要的算法。以点P为端点,向左方作射线L,由于多边形是有界的,所以射线L的左端一定在多边形 外,考虑沿着L从无穷远处开始自左向右移动,遇到和多边形的第一个交点的时候,进入到了多边形的内部,遇到第二个交点的时候,离开了多边形,……所以很容 易看出当L和多边形的交点数目C是奇数的时候,P在多边形内,是偶数的话P在多边形外。

但是有些特殊情况要加以考虑。如图下图(a)(b)(c)(d)所示。在图(a)中,L和多边形的顶点相交,这时候交点只能计算一个;在图(b)中,L和 多边形顶点的交点不应被计算;在图(c)和(d)中,L和多边形的一条边重合,这条边应该被忽略不计。如果L和多边形的一条边重合,这条边应该被忽略不计。

为了统一起见,我们在计算射线L和多边形的交点的时候,1。对于多边形的水平边不作考虑;2。对于多边形的顶点和L相交的情况,如果该顶点是其所属的边上 纵坐标较大的顶点,则计数,否则忽略;3。对于P在多边形边上的情形,直接可判断P属于多边行。由此得出算法的伪代码如下:

count ← 0;以P为端点,作从右向左的射线L; for多边形的每条边s do if P在边s上 then return true; if s不是水平的 then if s的一个端点在L上 if 该端点是s两端点中纵坐标较大的端点then count← count+1 else if s和L相交 then count← count+1; if count mod 2 = 1 then return true; else return false;

其中做射线L的方法是:设P\’的纵坐标和P相同,横坐标为正无穷大(很大的一个正数),则P和P\’就确定了射线L。

判断点是否在多边形中的这个算法的时间复杂度为O(n)。

另外还有一种算法是用带符号的三角形面积之和与多边形面积进行比较,这种算法由于使用浮点数运算所以会带来一定误差,不推荐大家使用。

判断线段是否在多边形内

线段在多边形内的一个必要条件是线段的两个端点都在多边形内,但由于多边形可能为凹,所以这不能成为判断的充分条件。如果线段和多边形的某条边内交(两线段内交是指两线段相交且交点不在两线段的端点),因为多边形的边的左右两侧分属多边形内外不同部分,所以线段一定会有一部分在多边形外。于是我们得到线段在多边形内的第二个必要条件:线段和多边形的所有边都不内交。

线段和多边形交于线段的两端点并不会影响线段是否在多边形内;但是如果多边形的某个顶点和线段相交,还必须判断两相邻交点之间的线段是否包含于多边形内部。

因此我们可以先求出所有和线段相交的多边形的顶点,然后按照X-Y坐标排序(X坐标小的排在前面,对于X坐标相同的点,Y坐标小的排在前面,这种排序准则也是为了保证水平和垂直情况的判断正确),这样相邻的两个点就是在线段上相邻的两交点,如果任意相邻两点的中点也在多边形内,则该线段一定在多边形内。

证明如下:

命题1:如果线段和多边形的两相邻交点P1,P2的中点P\’也在多边形内,则P1, P2之间的所有点都在多边形内。

证明:假设P1,P2之间含有不在多边形内的点,不妨设该点为Q,在P1, P\’之间,因为多边形是闭合曲线,所以其内外部之间有界,而P1属于多边行内部,Q属于多边性外部,P\’属于多边性内部,P1-Q-P\’完全连续, 所以P1Q和QP\’一定跨越多边形的边界,因此在P1,P\’之间至少还有两个该线段和多边形的交点,这和P1P2是相邻两交点矛盾,故命题成立。证毕。

由命题1直接可得出推论:推论2:设多边形和线段PQ的交点依次为P1,P2,……Pn,其中Pi和Pi+1是相邻两交点,线段PQ在多边形内的充要条件 是:P,Q在多边形内且对于i =1, 2,……, n-1,Pi ,Pi+1的中点也在多边形内。在实际编程中,没有必要计算所有的交点,首先应判断线段和多边形的边是否内交,倘若线段和多边形的某条边内交则线段一定在 多边形外;如果线段和多边形的每一条边都不内交,则线段和多边形的交点一定是线段的端点或者多边形的顶点,只要判断点是否在线段上就可以了。至此我们得出 算法如下:

if 线端PQ的端点不都在多边形内 then return false;点集pointSet初始化为空; for多边形的每条边s do if线段的某个端点在s上 then将该端点加入pointSet; else if s的某个端点在线段PQ上 then 将该端点加入pointSet; else if s和线段PQ相交 // 这时候已经可以肯定是内交了 then return false;将pointSet中的点按照X-Y坐标排序; for pointSet中每两个相邻点 pointSet[i] , pointSet[ i+1] do if pointSet[i] , pointSet[ i+1]的中点不在多边形中then return false; return true;

这个过程中的排序因为交点数目肯定远小于多边形的顶点数目n,所以最多是常数级的复杂度,几乎可以忽略不计。因此算法的时间复杂度也是 O(n)。

判断折线是否在多边形内

只要判断折线的每条线段是否都在多边形内即可。设折线有m条线段,多边形有n个顶点,则该算法的时间复杂度为O(m*n)。

判断多边形是否在多边形内

只要判断多边形的每条边是否都在多边形内即可。判断一个有m个顶点的多边形是否在一个有n个顶点的多边形内复杂度为O(m*n)。

判断矩形是否在多边形内

将矩形转化为多边形,然后再判断是否在多边形内。

判断圆是否在多边形内

只要计算圆心到多边形的每条边的最短距离,如果该距离大于等于圆半径则该圆在多边形内。计算圆心到多边形每条边最短距离的算法在后文阐述。

判断点是否在圆内

计算圆心到该点的距离,如果小于等于半径则该点在圆内。

判断线段、折线、矩形、多边形是否在圆内

因为圆是凸集,所以只要判断是否每个顶点都在圆内即可。

判断圆是否在圆内

设两圆为O1,O2,半径分别为r1, r2,要判断O2是否在O1内。先比较r1,r2的大小,如果r1< r2则O2不可能在O1内;否则如果两圆心的距离大于r1 - r2 ,则O2不在O1内;否则O2在O1内。

计算点到线段的最近点

如 果该线段平行于X轴(Y轴),则过点point作该线段所在直线的垂线,垂足很容易求得,然后计算出垂足,如果垂足在线段上则返回垂足,否则返回离垂足近 的端点;如果该线段不平行于X轴也不平行于Y轴,则斜率存在且不为0。设线段的两端点为pt1和pt2,斜率为:k = ( pt2.y - pt1. y ) / (pt2.x - pt1.x );该直线方程为:y = k * ( x - pt1.x) + pt1.y。其垂线的斜率为 - 1 / k,垂线方程为:y = (-1/k) * (x - point.x) + point.y。

联立两直线方程解得:x = ( k^2 * pt1.x + k * (point.y - pt1.y ) + point.x ) / ( k^2 + 1),y = k * ( x- pt1.x) + pt1.y;然后再判断垂足是否在线段上,如果在线段上则返回垂足;如果不在则计算两端点到垂足的距离,选择距离垂足较近的端点返回。

计算点到折线、矩形、多边形的最近点

只要分别计算点到每条线段的最近点,记录最近距离,取其中最近距离最小的点即可。

GIS开发 图形常见算法的更多相关文章

  1. Java开发中常见的危险信号(中)

    本文来源于我在InfoQ中文站原创的文章,原文地址是:http://www.infoq.com/cn/news/2013/12/common-red-flags-in-java-1 Dustin Ma ...

  2. 在桌面Linux环境下开发图形界面程序的方案对比

    在Linux下开发GUI程序的方法有很多,比如Gnome桌面使用GTK+作为默认的图形界面库,KDE桌面使用Qt作为默认的图形界面库,wxWidgets则是另一个使用广泛的图形库,此外使用Java中的 ...

  3. Android开发中常见的设计模式 MD

    Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...

  4. C# .NET开发图形图像程序时提示"GDI+ 中发生一般性错误"

    今天突然收到一封信,说我那个极度复杂的Marshal的问题被解决了(http://www.cnblogs.com/hotcan/archive/2005/01/12/91007.html).顿时感觉好 ...

  5. Hadoop学习笔记—12.MapReduce中的常见算法

    一.MapReduce中有哪些常见算法 (1)经典之王:单词计数 这个是MapReduce的经典案例,经典的不能再经典了! (2)数据去重 "数据去重"主要是为了掌握和利用并行化思 ...

  6. [Machine Learning] 机器学习常见算法分类汇总

    声明:本篇博文根据http://www.ctocio.com/hotnews/15919.html整理,原作者张萌,尊重原创. 机器学习无疑是当前数据分析领域的一个热点内容.很多人在平时的工作中都或多 ...

  7. asp.net开发中常见公共捕获异常方式总结(附源码)

    本文实例总结了asp.net开发中常见公共捕获异常方式.分享给大家供大家参考,具体如下: 前言:在实际开发过程中,对于一个应用系统来说,应该有自己的一套成熟的异常处理框架,这样当异常发生时,也能得到统 ...

  8. acm常见算法及例题

    转自:http://blog.csdn.net/hengjie2009/article/details/7540135 acm常见算法及例题  初期:一.基本算法:     (1)枚举. (poj17 ...

  9. 常见算法是js实现汇总(转载)

    常见算法是js实现汇总 /*去重*/ <script> function delRepeat(arr){ var newArray=new Array(); var len=arr.len ...

随机推荐

  1. 从零开始搭建一个vue.js的脚手架

    在谷歌工作的时候,我们要做很多界面的原型,要求快速上手,灵活运用,当时用的一些现有框架,比如angular,太笨重了——尤雨溪(Vue.js 作者) vue.js是现在一个很火的前端框架,官网描述其简 ...

  2. CentOS 7 zabbix实现微信报警

    环境 : LAMP  CentOS7  192.168.94.11 首先搭建LAMP环境 , 安装zabbix [root@zabbix-server ~]# wget http://repo.zab ...

  3. python 类的属性__slots__ (了解一点点)

    当一个类需要创建大量实例时,可以通过__slots__声明实例所需要的属性, 优点: 1)更快的属性访问速度 2)减少内存消耗 3)限定一个类创建的实例只能有固定的实例属性(实例变量),不允许对象添加 ...

  4. REST AND SOAP

    REST,即Representational State Transfer的缩写.直接翻译的意思是"表现层状态转化".它是一种互联网应用程序的API设计理念:URL定位资源,用HT ...

  5. C博客作业03--函数

    1. 本章学习总结 1.1 思维导图 1.2 本章学习体会及代码量学习体会 1.2.1 学习体会 这几周学习了函数,题目还是原样只是多了种做题的方法.一开始看书感觉声明,定义啊,还有全局变量那些,文绉 ...

  6. 关于linux系统CPU篇--->平均负载

    1.什么是平均负载?(load average) 平均负载是指单位时间内平均活跃进程数,包括可运行状态的进程数,以及不可中断状态的进程(如等待IO,等待硬件设备响应) 2.如何查看平均负载? 使用to ...

  7. ss命令详解

    ss是Socket Statistics的缩写.顾名思义,ss命令可以用来获取socket统计信息,它可以显示和netstat类似的内容.ss的优势在于它能够显示更多更详细的有关TCP和连接状态的信息 ...

  8. unix socket服务器

    只能处理单个消息,一发一收. int loop(void) {   struct sockaddr_un client_addr;  int server_socket, client_socket; ...

  9. tinkpad e450c 进入 BIOS

    电脑开机状态下重启电脑,同时连续单击F1 听到"嘟"的一声继续按F1键即可进入BIOS管理界面. 注意:此时Fn要在锁定状态,即Fn键盘灯亮.[可用Fn+Esc切换Fn锁定和未锁定 ...

  10. day09内存管理

    复习 ''' 文件处理 1.操作文件的三步骤 -- 打开文件:硬盘的空间被操作系统持有 | 文件对象被应用程序持续 -- 操作文件:读写操作 -- 释放文件:释放操作系统对硬盘空间的持有 2.基础的读 ...