题意

C. Gerald and Giant Chess
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Giant chess is quite common in Geraldion. We will not delve into the rules of the game, we'll just say that the game takes place on an h × w field, and it is painted in two colors, but not like in chess. Almost all cells of the field are white and only some of them are black. Currently Gerald is finishing a game of giant chess against his friend Pollard. Gerald has almost won, and the only thing he needs to win is to bring the pawn from the upper left corner of the board, where it is now standing, to the lower right corner. Gerald is so confident of victory that he became interested, in how many ways can he win?

The pawn, which Gerald has got left can go in two ways: one cell down or one cell to the right. In addition, it can not go to the black cells, otherwise the Gerald still loses. There are no other pawns or pieces left on the field, so that, according to the rules of giant chess Gerald moves his pawn until the game is over, and Pollard is just watching this process.

Input

The first line of the input contains three integers: h, w, n — the sides of the board and the number of black cells (1 ≤ h, w ≤ 105, 1 ≤ n ≤ 2000).

Next n lines contain the description of black cells. The i-th of these lines contains numbers ri, ci (1 ≤ ri ≤ h, 1 ≤ ci ≤ w) — the number of the row and column of the i-th cell.

It is guaranteed that the upper left and lower right cell are white and all cells in the description are distinct.

Output

Print a single line — the remainder of the number of ways to move Gerald's pawn from the upper left to the lower right corner modulo 109 + 7.

Examples
Input
Copy
3 4 2
2 2
2 3
Output
Copy
2
Input
Copy
100 100 3
15 16
16 15
99 88
Output
Copy
545732279

给出一个h*w的棋盘(h,w<=1e5),其中有n个位置不能走(n<=2000),现在要从左上角走到右下角,每步只能向下或者向右走一步。问有多少种走法?右下角保证可以走到。

分析

参照PoemK的题解。

对于右走x步,下走y步的无限制方案数是C(x+y,y),可以记为C(x,y)。

首先将最右下角也作为一个不能走的位置,最后要求出到达这个位置的合法路径数dp[n]。

对所有不能走的位置排序,先比较行,再比较列。

对于位置i,首先有dp[i]=C(x[i],y[i]);

然后到达i途中不能经过任何一个障碍位置,所以枚举第一个障碍位置。dp[i]=dp[i]−∑dp[k]∗C(k−>i)(ifC(k−>i)>0)

时间复杂度\(O(n^2)\)

代码

#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;rg char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') w=-1;ch=getchar();}
while(isdigit(ch)) data=data*10+ch-'0',ch=getchar();
return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll;
using namespace std; co int N=2e5,mod=1e9+7;
int add(int x,int y) {return (x+=y)>=mod?x-mod:x;}
int mul(int x,int y) {return (ll)x*y%mod;}
int fpow(int x,int k){
int re=1;
for(;k;k>>=1,x=mul(x,x))
if(k&1) re=mul(re,x);
return re;
}
int fac[N],ifac[N];
int binom(int n,int m) {return mul(fac[n],mul(ifac[m],ifac[n-m]));}
#define x first
#define y second
pair<int,int> a[N];
int h,w,n,f[N];
int main(){
fac[0]=ifac[0]=1;
for(int i=1;i<N;++i){
fac[i]=mul(fac[i-1],i);
ifac[i]=fpow(fac[i],mod-2);
}
read(h),read(w),read(n);
for(int i=1;i<=n;++i) read(a[i].x),read(a[i].y);
sort(a+1,a+n+1);
a[n+1].x=h,a[n+1].y=w;
for(int i=1;i<=n+1;++i){
f[i]=binom(a[i].x+a[i].y-2,a[i].x-1);
for(int j=1;j<i;++j)if(a[j].x<=a[i].x&&a[j].y<=a[i].y)
f[i]=add(f[i],mod-mul(f[j],binom(a[i].x+a[i].y-a[j].x-a[j].y,a[i].x-a[j].x)));
}
printf("%d\n",f[n+1]);
return 0;
}

CF559C Gerald and Giant Chess的更多相关文章

  1. cf559C. Gerald and Giant Chess(容斥原理)

    题意 $h \times w$的网格,有$n$个障碍点, 每次可以向右或向下移动 求从$(1, 1)$到$(h, w)$不经过障碍点的方案数 Sol 容斥原理 从$(1, 1)$到$(h, w)$不经 ...

  2. CF-559C Gerald and Giant Chess(计数DP)

    给定一个 \(H*W\)的棋盘,棋盘上只有\(N\) 个格子是黑色的,其他格子都是白色的. 在棋盘左上角有一个卒,每一步可以向右或者向下移动一格,并且不能移动到黑色格子中.求这个卒从左上角移动到右下角 ...

  3. 【题解】CF559C C. Gerald and Giant Chess(容斥+格路问题)

    [题解]CF559C C. Gerald and Giant Chess(容斥+格路问题) 55336399 Practice: Winlere 559C - 22 GNU C++11 Accepte ...

  4. dp - Codeforces Round #313 (Div. 1) C. Gerald and Giant Chess

    Gerald and Giant Chess Problem's Link: http://codeforces.com/contest/559/problem/C Mean: 一个n*m的网格,让你 ...

  5. CodeForces 559C Gerald and Giant Chess

    C. Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  6. Gerald and Giant Chess

    Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  7. E. Gerald and Giant Chess

    E. Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes2015-09-0 ...

  8. Codeforces Round #313 (Div. 1) C. Gerald and Giant Chess DP

    C. Gerald and Giant Chess Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...

  9. codeforces(559C)--C. Gerald and Giant Chess(组合数学)

    C. Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes input st ...

随机推荐

  1. .net回复图片

    using System;using System.Collections.Generic;using System.Web;using System.Web.UI;using System.Web. ...

  2. spring cloud 服务A调用服务B自定义token消失,记录

    后端:spring cloud 前端:vue 场景:前端ajax请求,包装自定义请求头token到后台做验证,首先调用A服务,A服务通过Feign调用B服务发现自定义token没有传到B服务去; 原因 ...

  3. Beta阶段冲刺一

    Beta冲刺一 1.团队TSP 团队任务 预估时间 实际时间 完成日期 对数据库的最终完善 120 150 12.2 对学生注册功能的完善--新增触发器 150 140 11.29 对教师注册功能的完 ...

  4. Windows7上安装Ubuntu双系统

    零.前言 最近不小心把Ubuntu系统搞崩了打不开了,在网上找了找方法,从最初的步骤开始安装,本文是安装Ubuntu16.04,不过安装啥版本步骤都一样,下面逐一介绍. 一.如何卸载Ubuntu(第一 ...

  5. classPath与PATH

    PATH是window的变量,而不是Java的变量: 通常配置PATH路径是为了找到需要的XX.exe命令,而且配置在用户的变量下面: 例如:JDK中的javac与java命令在cmd中使用,需要把命 ...

  6. linux 命令启动Oracle数据库

    首先使用oracle用户登录Linux,然后在shell命令行中执行下面的命令: 第一步:打开Oracle监听lsnrctl start 第二步:进入sqlplussqlplus /nologSQL& ...

  7. Java中栈的应用,括号匹配

    package edu.yuliang.Data_Structure_Basics; import org.omg.PortableInterceptor.SYSTEM_EXCEPTION; /* 给 ...

  8. 关于springboot项目中自动注入,但是用的时候值为空的BUG

    最近想做一些web项目来填充下业余时间,首先想到了使用springboot框架,毕竟方便 快捷 首先:去这里 http://start.spring.io/ 直接构建了一个springboot初始化的 ...

  9. Windows10 VS2017 C++模拟点击按键

    #include "pch.h" #include <Windows.h> #include <stdio.h> #include <iostream ...

  10. Linux 环境下安装Redis的步骤

    #进入usr/local目录cd /usr/local#下载1.wget http://download.redis.io/releases/redis-4.0.10.tar.gz#解压2.tar x ...