[py]pandas数据统计学习
pandas.core.base.DataError: No numeric types to aggregate错误规避
我没有去解决这个问题, 而用填充0规避了这个问题
统计 聚合
d = [
{'cur': 1, 'next': 2, 'avgtime': None, 'callcount': None},
{'cur': 2, 'next': 3, 'avgtime': None, 'callcount': None},
{'cur': 2, 'next': 4, 'avgtime': None, 'callcount': None},
{'cur': 1, 'next': 2, 'avgtime': None, 'callcount': None},
{'cur': 2, 'next': 3, 'avgtime': None, 'callcount': None},
{'cur': 2, 'next': 4, 'avgtime': None, 'callcount': None},
{'cur': None, 'next': 4, 'avgtime': None, 'callcount': None},
]
df = pd.DataFrame(d, dtype='int')
df.groupby(["cur", "next"], as_index=False).mean()
重要总结:
1. None为NaN
2. count会统计空字符串, 但是cont不统计NaN. sum不统计NaN, 否则就会像sql里select(1+NULL)结果是NULL
3. 分组key为None时,记录不显示
计算mean()时DataError: No numeric types to aggregate
agg函数
使用这种聚合会卡到这个bug
pandas.core.base.DataError: No numeric types to aggregate错误规避
import pandas as pd
d = [
{'cur': 1, 'next': 2, 'avgtime': None, 'callcount': None},
{'cur': 2, 'next': 3, 'avgtime': None, 'callcount': None},
{'cur': 2, 'next': 4, 'avgtime': None, 'callcount': None},
{'cur': 1, 'next': 2, 'avgtime': None, 'callcount': None},
{'cur': 2, 'next': 3, 'avgtime': None, 'callcount': None},
{'cur': 2, 'next': 4, 'avgtime': None, 'callcount': None},
{'cur': None, 'next': 4, 'avgtime': None, 'callcount': None},
]
df = pd.DataFrame(d, dtype='int')
g = df.groupby(["cur", "next"], as_index=False)
res = g.agg(
{
'avgtime': 'sum',
'callcount': 'mean',
}
)
复杂的分组: cur分别与p1 p2 p3分组
import numpy as np
import pandas as pd
d = [
{
'cur': 1,
'p1_next': 1,
'p1_avgtime': 10,
'p1_callaccount': 10,
'p2_next': 2,
'p2_avgtime': None,
'p2_callaccount': 10,
'p3_next': 3,
'p3_avgtime': 10,
'p3_callaccount': None,
}
]
df = pd.DataFrame(d, dtype='int')
df.groupby(["cur", "p2_next"], as_index=False).sum().to_dict(orient='records')
[py]pandas数据统计学习的更多相关文章
- 转载,Pandas 数据统计用法
pandas模块为我们提供了非常多的描述性统计分析的指标函数,如总和.均值.最小值.最大值等,我们来具体看看这些函数: 1.随机生成三组数据import numpy as npimport panda ...
- pandas数据统计
1 count() 非空观测数量 2 sum() 所有值之和 3 mean() 所有值的平均值 4 median() 所有值的中位数 5 mode() 值的模值 6 std() 值的标准偏差 7 mi ...
- (数据科学学习手札69)详解pandas中的map、apply、applymap、groupby、agg
*从本篇开始所有文章的数据和代码都已上传至我的github仓库:https://github.com/CNFeffery/DataScienceStudyNotes 一.简介 pandas提供了很多方 ...
- pandas数据框,统计某列或者某行数据元素的个数
版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/sinat_38893241/articl ...
- (数据科学学习手札72)用pdpipe搭建pandas数据分析流水线
1 简介 在数据分析任务中,从原始数据读入,到最后分析结果出炉,中间绝大部分时间都是在对数据进行一步又一步的加工规整,以流水线(pipeline)的方式完成此过程更有利于梳理分析脉络,也更有利于查错改 ...
- 大数据学习day34---spark14------1 redis的事务(pipeline)测试 ,2. 利用redis的pipeline实现数据统计的exactlyonce ,3 SparkStreaming中数据写入Hbase实现ExactlyOnce, 4.Spark StandAlone的执行模式,5 spark on yarn
1 redis的事务(pipeline)测试 Redis本身对数据进行操作,单条命令是原子性的,但事务不保证原子性,且没有回滚.事务中任何命令执行失败,其余的命令仍会被执行,将Redis的多个操作放到 ...
- 大数据学习day33----spark13-----1.两种方式管理偏移量并将偏移量写入redis 2. MySQL事务的测试 3.利用MySQL事务实现数据统计的ExactlyOnce(sql语句中出现相同key时如何进行累加(此处时出现相同的单词))4 将数据写入kafka
1.两种方式管理偏移量并将偏移量写入redis (1)第一种:rdd的形式 一般是使用这种直连的方式,但其缺点是没法调用一些更加高级的api,如窗口操作.如果想更加精确的控制偏移量,就使用这种方式 代 ...
- [译]针对科学数据处理的统计学习教程(scikit-learn教程2)
翻译:Tacey Wong 统计学习: 随着科学实验数据的迅速增长,机器学习成了一种越来越重要的技术.问题从构建一个预测函数将不同的观察数据联系起来,到将观测数据分类,或者从未标记数据中学习到一些结构 ...
- scikit-learning教程(二)统计学习科学数据处理的教程
统计学习:scikit学习中的设置和估计对象 数据集 Scikit学习处理来自以2D数组表示的一个或多个数据集的学习信息.它们可以被理解为多维观察的列表.我们说这些阵列的第一个轴是样本轴,而第二个轴是 ...
随机推荐
- myeclipse安装spring插件
1.查看 myeclipse 中的 eclipse 对应的版本 2.下载对应eclipse的 spring 插件 首先要安装spring插件,可以到spring官网下载 地址(https://spr ...
- select2 api参数的文档
具体参数可以参考一下: 参数 类型 描述 Width 字符串 控制 宽度 样式属性的Select2容器div minimumInputLength int 最小数量的字符 maximumInputLe ...
- Pok 使用指南
Pok 使用指南 POK 是一个开源的符合ARINC653的操作系统,因为一些原因,我要开始接触一个全新的领域,再此希望记录下每天点滴进步,同时也欢迎指正吧. 目前先简单说明POK的使用指南 获取源码 ...
- python3 配置logging日志类
配置类config_file: from configparser import ConfigParser class config_file: def __init__(self,conf_file ...
- Telephone Lines [POJ3662] [二分答案]
Description Farmer John打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务.于是,FJ必须为此向电信公司支付一定的费用. FJ的农场周围分布着N(1 <= N ...
- java遍历List中的map的几种方法
Student 类 public class Student { private String name; private int age; private int taller; public St ...
- 【树状数组】区间出现偶数次数的异或和(区间不同数的异或和)@ codeforce 703 D
[树状数组]区间出现偶数次数的异或和(区间不同数的异或和)@ codeforce 703 D PROBLEM 题目描述 初始给定n个卡片拍成一排,其中第i个卡片上的数为x[i]. 有q个询问,每次询问 ...
- flask之wtforms
本篇导航: wtforms组件的使用 自定义From组件 一.wtforms组件的使用 1.flask中的wtforms WTForms是一个支持多个web框架的form组件,主要用于对用户请求数据进 ...
- 20181207_Second_小结
1. 上下 200*200 盒子的重叠,切记用 absolute 绝对定位 为最佳解决方案 2. 移动端多使用 粘连布局 <!DOCTYPE html> <html> < ...
- Python练手例子(5)
25.求1+2!+3!+...+20!的和. 程序分析:此程序只是把累加变成了累乘. #python3.7 n = 0 s = 0 t = 1 for n in range(1, 21): t *= ...