本文将讲解volatile关键字和 atomic包,为什么放到一起讲呢,主要是因为这两个可以解决并发编程中的原子性、可见性、有序性,让我们一起来看看吧。

Java内存模型

JMM(java内存模型)

  java虚拟机有自己的内存模型(Java Memory Model,JMM),JMM可以屏蔽掉各种硬件和操作系统的内存访问差异,以实现让java程序在各种平台下都能达到一致的内存访问效果。

  JMM决定一个线程对共享变量的写入何时对另一个线程可见,JMM定义了线程和主内存之间的抽象关系:共享变量存储在主内存(Main Memory)中,每个线程都有一个私有的本地内存(Local Memory),本地内存保存了被该线程使用到的主内存的副本拷贝,线程对变量的所有操作都必须在工作内存中进行,而不能直接读写主内存中的变量。这三者之间的交互关系如下

计算机在执行程序时,每条指令都是在CPU中执行的,而执行指令过程中,势必涉及到数据的读取和写入。由于程序运行过程中的临时数据是存放在主存(物理内存)当中的,这时就存在一个问题,由于CPU执行速度很快,而从内存读取数据和向内存写入数据的过程跟CPU执行指令的速度比起来要慢的多,因此如果任何时候对数据的操作都要通过和内存的交互来进行,会大大降低指令执行的速度。因此在CPU里面就有了高速缓存。

  也就是,当程序在运行过程中,会将运算需要的数据从主存复制一份到CPU的高速缓存当中,那么CPU进行计算时就可以直接从它的高速缓存读取数据和向其中写入数据,当运算结束之后,再将高速缓存中的数据刷新到主存当中。举个简单的例子,比如下面的这段代码:

i = i + 1;

当线程执行这个语句时,会先从主存当中读取i的值,然后复制一份到高速缓存当中,然后CPU执行指令对i进行加1操作,然后将数据写入高速缓存,最后将高速缓存中i最新的值刷新到主存当中。

  这个代码在单线程中运行是没有任何问题的,但是在多线程中运行就会有问题了。在多核CPU中,每条线程可能运行于不同的CPU中,因此每个线程运行时有自己的高速缓存(对单核CPU来说,其实也会出现这种问题,只不过是以线程调度的形式来分别执行的)。本文我们以多核CPU为例。

  比如同时有2个线程执行这段代码,假如初始时i的值为0,那么我们希望两个线程执行完之后i的值变为2。但是事实会是这样吗?

  可能存在下面一种情况:初始时,两个线程分别读取i的值存入各自所在的CPU的高速缓存当中,然后线程1进行加1操作,然后把i的最新值1写入到内存。此时线程2的高速缓存当中i的值还是0,进行加1操作之后,i的值为1,然后线程2把i的值写入内存。

  最终结果i的值是1,而不是2。这就是著名的缓存一致性问题。通常称这种被多个线程访问的变量为共享变量。

并发编程中的三个概念

  在并发编程中,我们通常会遇到以下三个问题:原子性问题,可见性问题,有序性问题。我们先看具体看一下这三个概念:

1.原子性

  原子性:即一个操作或者多个操作 要么全部执行并且执行的过程不会被任何因素打断,要么就都不执行。

  一个很经典的例子就是银行账户转账问题:

  比如从账户A向账户B转1000元,那么必然包括2个操作:从账户A减去1000元,往账户B加上1000元。

  试想一下,如果这2个操作不具备原子性,会造成什么样的后果。假如从账户A减去1000元之后,操作突然中止。然后又从B取出了500元,取出500元之后,再执行 往账户B加上1000元 的操作。这样就会导致账户A虽然减去了1000元,但是账户B没有收到这个转过来的1000元。

  所以这2个操作必须要具备原子性才能保证不出现一些意外的问题。

2.可见性

  可见性是指当多个线程访问同一个变量时,一个线程修改了这个变量的值,其他线程能够立即看得到修改的值。

  举个简单的例子,看下面这段代码:

 //线程1执行的代码
int i = 0;
i = 10; //线程2执行的代码
j = i;

假若执行线程1的是CPU1,执行线程2的是CPU2。由上面的分析可知,当线程1执行 i =10这句时,会先把i的初始值加载到CPU1的高速缓存中,然后赋值为10,那么在CPU1的高速缓存当中i的值变为10了,却没有立即写入到主存当中。

此时线程2执行 j = i,它会先去主存读取i的值并加载到CPU2的缓存当中,注意此时内存当中i的值还是0,那么就会使得j的值为0,而不是10。

这就是可见性问题,线程1对变量i修改了之后,线程2没有立即看到线程1修改的值。

3.有序性

  有序性:即程序执行的顺序按照代码的先后顺序执行。举个简单的例子,看下面这段代码:

int i = 0;
boolean flag = false;
i = 1; //语句1
flag = true; //语句2

从代码顺序上看,语句1是在语句2前面的,那么JVM在真正执行这段代码的时候会保证语句1一定会在语句2前面执行吗?不一定,为什么呢?这里可能会发生指令重排序(Instruction Reorder)。

一般来说,处理器为了提高程序运行效率,可能会对输入代码进行优化,它不保证程序中各个语句的执行先后顺序同代码中的顺序一致,但是它会保证程序最终执行结果和代码顺序执行的结果是一致的。

比如上面的代码中,语句1和语句2谁先执行对最终的程序结果并没有影响,那么就有可能在执行过程中,语句2先执行而语句1后执行。

但是重排序也需要遵守一定规则:

  1.重排序操作不会对存在数据依赖关系的操作进行重排序。

    比如:a=1;b=a; 这个指令序列,由于第二个操作依赖于第一个操作,所以在编译时和处理器运行时这两个操作不会被重排序。

  2.重排序是为了优化性能,但是不管怎么重排序,单线程下程序的执行结果不能被改变

    比如:a=1;b=2;c=a+b这三个操作,第一步(a=1)和第二步(b=2)由于不存在数据依赖关系,所以可能会发生重排序,但是c=a+b这个操作是不会被重排序的,因为需要保证最终的结果一定是c=a+b=3。

volatile关键字

   volatile是Java提供的一种轻量级的同步机制。同synchronized相比(synchronized通常称为重量级锁),volatile更轻量级。

  一旦一个共享变量(类的成员变量、类的静态成员变量)被volatile修饰之后,那么就具备了两层语义:

  1)保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量的值,这新值对其他线程来说是立即可见的。

  2)禁止进行指令重排序。

1、共享变量的可见性

public class TestVolatile {

    public static void main(String[] args) {
ThreadDemo td = new ThreadDemo();
new Thread(td).start();
while(true){
if(td.isFlag()){
System.out.println("------------------");
break;
}
}
} } class ThreadDemo implements Runnable {
private boolean flag = false;
@Override
public void run() {
try {
Thread.sleep(200);
} catch (InterruptedException e) {
}
flag = true;
System.out.println("flag=" + isFlag());
} public boolean isFlag() {
return flag;
}
}

上面这个例子,开启一个多线程去改变flag为true,main 主线程中可以输出"------------------"吗?

  答案是NO! 

  这个结论会让人有些疑惑,可以理解。开启的线程虽然修改了flag 的值为true,但是还没来得及写入主存当中,此时main里面的 td.isFlag()还是false,但是由于 while(true)  是底层的指令来实现,速度非常之快,一直循环都没有时间去主存中更新td的值,所以这里会造成死循环!运行结果如下:

此时线程是没有停止的,一直在循环。

如何解决呢?只需将 flag 声明为volatile,即可保证在开启的线程A将其修改为true时,main主线程可以立刻得知:

  第一:使用volatile关键字会强制将修改的值立即写入主存;

  第二:使用volatile关键字的话,当开启的线程进行修改时,会导致main线程的工作内存中缓存变量flag的缓存行无效(反映到硬件层的话,就是CPU的L1缓存中对应的缓存行无效);

  第三:由于线程main的工作内存中缓存变量flag的缓存行无效,所以线程main再次读取变量flag的值时会去主存读取。

volatile具备两种特性,第一就是保证共享变量对所有线程的可见性。将一个共享变量声明为volatile后,会有以下效应:

  1.当写一个volatile变量时,JMM会把该线程对应的本地内存中的变量强制刷新到主内存中去;

  2.这个写会操作会导致其他线程中的缓存无效。

2、禁止进行指令重排序

这里我们引用上篇文章单例里面的例子

 class Singleton{
private volatile static Singleton instance = null; private Singleton() {
} public static Singleton getInstance() {
if(instance==null) {
synchronized (Singleton.class) {
if(instance==null)
instance = new Singleton();
}
}
return instance;
}
}

instance = new Singleton(); 这段代码可以分为三个步骤:
1、memory = allocate() 分配对象的内存空间
2、ctorInstance() 初始化对象
3、instance = memory 设置instance指向刚分配的内存

但是此时有可能发生指令重排,CPU 的执行顺序可能为:

1、memory = allocate() 分配对象的内存空间
3、instance = memory 设置instance指向刚分配的内存
2、ctorInstance() 初始化对象

在单线程的情况下,1->3->2这种顺序执行是没有问题的,但是如果是多线程的情况则有可能出现问题,线程A执行到11行代码,执行了指令1和3,此时instance已经有值了,值为第一步分配的内存空间地址,但是还没有进行对象的初始化;

此时线程B执行到了第8行代码处,此时instance已经有值了则return instance,线程B 使用instance的时候,就会出现异常。

这里可以使用 volatile 来禁止指令重排序。

从上面知道volatile关键字保证了操作的可见性和有序性,但是volatile能保证对变量的操作是原子性吗?

下面看一个例子:

package com.mmall.concurrency.example.count;
import java.util.concurrent.CountDownLatch; /**
* @author: ChenHao
* @Description:
* @Date: Created in 15:05 2018/11/16
* @Modified by:
*/
public class CountTest {
// 请求总数
public static int clientTotal = 5000;
public static volatile int count = 0; public static void main(String[] args) throws Exception {
//使用CountDownLatch来等待计算线程执行完
final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);
//开启clientTotal个线程进行累加操作
for(int i=0;i<clientTotal;i++){
new Thread(){
public void run(){
count++;//自加操作
countDownLatch.countDown();
}
}.start();
}
//等待计算线程执行完
countDownLatch.await();
System.out.println(count);
}
}

执行结果:

针对这个示例,一些同学可能会觉得疑惑,如果用volatile修饰的共享变量可以保证可见性,那么结果不应该是5000么?

问题就出在count++这个操作上,因为count++不是个原子性的操作,而是个复合操作。我们可以简单讲这个操作理解为由这三步组成:

  1.读取count

  2.count 加 1

  3.将count 写到主存

  所以,在多线程环境下,有可能线程A将count读取到本地内存中,此时其他线程可能已经将count增大了很多,线程A依然对过期的本地缓存count进行自加,重新写到主存中,最终导致了count的结果不合预期,而是小于5000。

那么如何来解决这个问题呢?下面我们来看看

Atomic包

在java 1.5的java.util.concurrent.atomic包下提供了一些原子操作类,即对基本数据类型的 自增(加1操作),自减(减1操作)、以及加法操作(加一个数),减法操作(减一个数)进行了封装,保证这些操作是原子性操作。atomic是利用CAS来实现原子性操作的(Compare And Swap)

package com.mmall.concurrency.example.count;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.atomic.AtomicInteger; /**
* @author: ChenHao
* @Description:
* @Date: Created in 15:05 2018/11/16
* @Modified by:
*/
public class CountTest {
// 请求总数
public static int clientTotal = 5000;
public static AtomicInteger count = new AtomicInteger(0); public static void main(String[] args) throws Exception {
//使用CountDownLatch来等待计算线程执行完
final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);
//开启clientTotal个线程进行累加操作
for(int i=0;i<clientTotal;i++){
new Thread(){
public void run(){
count.incrementAndGet();//先加1,再get到值
countDownLatch.countDown();
}
}.start();
}
//等待计算线程执行完
countDownLatch.await();
System.out.println(count);
}
}

执行结果:

下面我们来看看原子类操作的基本原理

 public final int incrementAndGet() {
return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
} public final int getAndAddInt(Object var1, long var2, int var4) {
int var5;
do {
var5 = this.getIntVolatile(var1, var2);
} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4)); return var5;
} /***
* 获取obj对象中offset偏移地址对应的整型field的值。
* @param obj 包含需要去读取的field的对象
* @param obj中整型field的偏移量
*/
public native int getIntVolatile(Object obj, long offset); /**
* 比较obj的offset处内存位置中的值和期望的值,如果相同则更新。此更新是不可中断的。
*
* @param obj 需要更新的对象
* @param offset obj中整型field的偏移量
* @param expect 希望field中存在的值
* @param update 如果期望值expect与field的当前值相同,设置filed的值为这个新值
* @return 如果field的值被更改返回true
*/
public native boolean compareAndSwapInt(Object obj, long offset, int expect, int update);

首先介绍一下什么是Compare And Swap(CAS)?简单的说就是比较并交换。

CAS 操作包含三个操作数 —— 内存位置(V)、预期原值(A)和新值(B)。如果内存位置的值与预期原值相匹配,那么处理器会自动将该位置值更新为新值。否则,处理器不做任何操作。无论哪种情况,它都会在 CAS 指令之前返回该位置的值。CAS 有效地说明了“我认为位置 V 应该包含值 A;如果包含该值,则将 B 放到这个位置;否则,不要更改该位置,只告诉我这个位置现在的值即可。” Java并发包(java.util.concurrent)中大量使用了CAS操作,涉及到并发的地方都调用了sun.misc.Unsafe类方法进行CAS操作。

我们来分析下incrementAndGet的逻辑:

  1.先获取当前的value值

  2.调用compareAndSet方法来来进行原子更新操作,这个方法的语义是:

    先检查当前value是否等于obj中整型field的偏移量处的值,如果相等,则意味着obj中整型field的偏移量处的值 没被其他线程修改过,更新并返回true。如果不相等,compareAndSet则会返回false,然后循环继续尝试更新。

第一次count 为0时线程A调用incrementAndGet时,传参为 var1=AtomicInteger(0),var2为var1 里面 0 的偏移量,比如为8090,var4为需要加的数值1,var5为线程工作内存值,do里面会先执行一次,通过getIntVolatile 获取obj对象中offset偏移地址对应的整型field的值此时var5=0;while 里面compareAndSwapInt 比较obj的8090处内存位置中的值和期望的值var5,如果相同则更新obj的值为(var5+var4=1),此时更新成功,返回true,则 while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));结束循环,return var5。

当count 为0时,线程B 和线程A 同时读取到 count ,进入到第 8 行代码处,线程B 也是取到的var5=0,当线程B 执行到compareAndSwapInt时,线程A已经执行完compareAndSwapInt,已经将内存地址为8090处的值修改为1,此时线程B 执行compareAndSwapInt返回false,则继续循环执行do里面的语句,再次取内存地址偏移量为8090处的值为1,再去执行compareAndSwapInt,更新obj的值为(var5+var4=2),返回为true,结束循环,return var5。

CAS的ABA问题

  当然CAS也并不完美,它存在"ABA"问题,假若一个变量初次读取是A,在compare阶段依然是A,但其实可能在此过程中,它先被改为B,再被改回A,而CAS是无法意识到这个问题的。CAS只关注了比较前后的值是否改变,而无法清楚在此过程中变量的变更明细,这就是所谓的ABA漏洞。

 

并发编程(一)—— volatile关键字和 atomic包的更多相关文章

  1. Java并发编程:volatile关键字解析

    Java并发编程:volatile关键字解析 volatile这个关键字可能很多朋友都听说过,或许也都用过.在Java 5之前,它是一个备受争议的关键字,因为在程序中使用它往往会导致出人意料的结果.在 ...

  2. (转)Java并发编程:volatile关键字解析

    转:http://www.cnblogs.com/dolphin0520/p/3920373.html Java并发编程:volatile关键字解析 volatile这个关键字可能很多朋友都听说过,或 ...

  3. Java并发编程:volatile关键字解析(转载)

    转自https://www.cnblogs.com/dolphin0520/p/3920373.html Java并发编程:volatile关键字解析   Java并发编程:volatile关键字解析 ...

  4. Java并发编程:volatile关键字解析-转

    Java并发编程:volatile关键字解析 转自海子:https://www.cnblogs.com/dayanjing/p/9954562.html volatile这个关键字可能很多朋友都听说过 ...

  5. 6、Java并发编程:volatile关键字解析

    Java并发编程:volatile关键字解析 volatile这个关键字可能很多朋友都听说过,或许也都用过.在Java 5之前,它是一个备受争议的关键字,因为在程序中使用它往往会导致出人意料的结果.在 ...

  6. 转:Java并发编程:volatile关键字解析

    Java并发编程:volatile关键字解析 Java并发编程:volatile关键字解析 volatile这个关键字可能很多朋友都听说过,或许也都用过.在Java 5之前,它是一个备受争议的关键字, ...

  7. [转载]Java并发编程:volatile关键字解析

    Java并发编程:volatile关键字解析 volatile这个关键字可能很多朋友都听说过,或许也都用过.在Java 5之前,它是一个备受争议的关键字,因为在程序中使用它往往会导致出人意料的结果.在 ...

  8. Java并发编程:volatile关键字解析(学习总结-海子)

    博文地址:Java并发编程:volatile关键字解析

  9. 【转】Java并发编程:volatile关键字解析

    转自:http://www.importnew.com/18126.html#comment-487304 volatile这个关键字可能很多朋友都听说过,或许也都用过.在Java 5之前,它是一个备 ...

随机推荐

  1. SQL增删改语句

    一,插入数据 1.使用  insert ...values 语句插入单行或多行元组数据 insert  into 表名 (列名,列名,...,列名) values 值 表名:指被插入数据的表名 列名: ...

  2. 福州大学软件工程1916|W班 第3次作业成绩排名

    作业链接 结对第二次-文献摘要热词统计及进阶需求 评分细则 本次作业由三部分组成(程序满分80,博客满分70,工程能力满分30) 程序评分标准 基础需求 共有7个测试用例,每个满分20分并按照一定的映 ...

  3. C#代码总结03---通过获取类型,分类对前台页面的控件进行赋值操作

    该方法: 一般用于将数据库中的基本信息字段显示到前台页面对应的字段控件中 private void InitViewZc(XxEntity model) { foreach (var info in ...

  4. buils tool是什么?为什么使用build tool?java主流的build tool

    定义: build tool是可以自动由源代码创建可执行的应用程序的程序. Building 包括编译.链接和打包代码成一个可用的或可执行形式. 在小型项目,开发人员常常会手动调用构建过程.在更大的项 ...

  5. 代码调用t.cn接口生成短址

    新浪短网址接口的稳定性和跳转速度还是很给力的,现给出其API说明. 该接口支持两种返回格式:xml和json 对应的URL请求地址为: xml:http://api.t.sina.com.cn/sho ...

  6. SpringBoot加Poi仿照EasyPoi实现Excel导出

    POI提供API给Java程序对Microsoft Office格式档案读和写的功能,详细功能可以直接查阅API,因为使用EasyPoi过程中总是缺少依赖,没有搞明白到底是什么坑,索性自己写一个简单工 ...

  7. IntelliJ IDEA之UML类图

    IntelliJ IDEA之UML类图 生成方法 Show Diagrams 选中需要的类,右键单击Diagrams,之后点击Show Diagrams,或者快捷键Ctrl+Alt+Shift+U 生 ...

  8. 树莓派虚拟环境手动安装HA

    树莓派手动安装 https://www.home-assistant.io/docs/installation/raspberry-pi/ sudo apt-get update sudo apt-g ...

  9. modbus tcp数据报文结构

    modbus tcp数据报文结构 请求:00 00 00 00 00 06 09 03 00 00 00 01 响应:00 00 00 00 00 05 09 03 02 12 34 一次modbus ...

  10. input标签实现小数点后两位保留小数

    短短一行代码就可以实现 <input type="number" min="0" max="100" step="0.01& ...