011_Python中单线程、多线程和多进程的效率对比实验
Python是运行在解释器中的语言,查找资料知道,python中有一个全局锁(GIL),在使用多进程(Thread)的情况下,不能发挥多核的优势。而使用多进程(Multiprocess),则可以发挥多核的优势真正地提高效率。
对比实验
资料显示,如果多线程的进程是CPU密集型的,那多线程并不能有多少效率上的提升,相反还可能会因为线程的频繁切换,导致效率下降,推荐使用多进程;如果是IO密集型,多线程进程可以利用IO阻塞等待时的空闲时间执行其他线程,提升效率。所以我们根据实验对比不同场景的效率
操作系统 | CPU | 内存 | 硬盘 |
---|---|---|---|
Windows 10 | 双核 | 8GB | 机械硬盘 |
(1)引入所需要的模块
1
2
3
4
|
import requests
import time
from threading import Thread
from multiprocessing import Process
|
(2)定义CPU密集的计算函数
Python
1
2
3
4
5
6
7
|
def count(x, y):
# 使程序完成150万计算
c = 0
while c < 500000:
c += 1
x += x
y += y
|
(3)定义IO密集的文件读写函数
1
2
3
4
5
6
7
8
9
10
|
def write():
f = open("test.txt", "w")
for x in range(5000000):
f.write("testwrite\n")
f.close()
def read():
f = open("test.txt", "r")
lines = f.readlines()
f.close()
|
(4) 定义网络请求函数
1
2
3
4
5
6
7
8
9
10
|
_head = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.116 Safari/537.36'}
url = "http://www.tieba.com"
def http_request():
try:
webPage = requests.get(url, headers=_head)
html = webPage.text
return {"context": html}
except Exception as e:
return {"error": e}
|
(5)测试线性执行IO密集操作、CPU密集操作所需时间、网络请求密集型操作所需时间
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
# CPU密集操作
t = time.time()
for x in range(10):
count(1, 1)
print("Line cpu", time.time() - t)
# IO密集操作
t = time.time()
for x in range(10):
write()
read()
print("Line IO", time.time() - t)
# 网络请求密集型操作
t = time.time()
for x in range(10):
http_request()
print("Line Http Request", time.time() - t)
|
输出
- CPU密集:95.6059999466、91.57099986076355 92.52800011634827、 99.96799993515015
- IO密集:24.25、21.76699995994568、21.769999980926514、22.060999870300293
- 网络请求密集型: 4.519999980926514、8.563999891281128、4.371000051498413、4.522000074386597、14.671000003814697
(6)测试多线程并发执行CPU密集操作所需时间
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
counts = []
t = time.time()
for x in range(10):
thread = Thread(target=count, args=(1,1))
counts.append(thread)
thread.start()
e = counts.__len__()
while True:
for th in counts:
if not th.is_alive():
e -= 1
if e <= 0:
break
print(time.time() - t)
|
Output: 99.9240000248 、101.26400017738342、102.32200002670288
(7)测试多线程并发执行IO密集操作所需时间
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
def io():
write()
read()
t = time.time()
ios = []
t = time.time()
for x in range(10):
thread = Thread(target=count, args=(1,1))
ios.append(thread)
thread.start()
e = ios.__len__()
while True:
for th in ios:
if not th.is_alive():
e -= 1
if e <= 0:
break
print(time.time() - t)
|
Output: 25.69700002670288、24.02400016784668
(8)测试多线程并发执行网络密集操作所需时间
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
t = time.time()
ios = []
t = time.time()
for x in range(10):
thread = Thread(target=http_request)
ios.append(thread)
thread.start()
e = ios.__len__()
while True:
for th in ios:
if not th.is_alive():
e -= 1
if e <= 0:
break
print("Thread Http Request", time.time() - t)
|
Output: 0.7419998645782471、0.3839998245239258、0.3900001049041748
(9)测试多进程并发执行CPU密集操作所需时间
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
counts = []
t = time.time()
for x in range(10):
process = Process(target=count, args=(1,1))
counts.append(process)
process.start()
e = counts.__len__()
while True:
for th in counts:
if not th.is_alive():
e -= 1
if e <= 0:
break
print("Multiprocess cpu", time.time() - t)
|
Output: 54.342000007629395、53.437999963760376
(10)测试多进程并发执行IO密集型操作
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
t = time.time()
ios = []
t = time.time()
for x in range(10):
process = Process(target=io)
ios.append(process)
process.start()
e = ios.__len__()
while True:
for th in ios:
if not th.is_alive():
e -= 1
if e <= 0:
break
print("Multiprocess IO", time.time() - t)
|
Output: 12.509000062942505、13.059000015258789
(11)测试多进程并发执行Http请求密集型操作
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
t = time.time()
httprs = []
t = time.time()
for x in range(10):
process = Process(target=http_request)
ios.append(process)
process.start()
e = httprs.__len__()
while True:
for th in httprs:
if not th.is_alive():
e -= 1
if e <= 0:
break
print("Multiprocess Http Request", time.time() - t)
|
Output: 0.5329999923706055、0.4760000705718994
实验结果
CPU密集型操作 | IO密集型操作 | 网络请求密集型操作 | |
---|---|---|---|
线性操作 | 94.91824996469 | 22.46199995279 | 7.3296000004 |
多线程操作 | 101.1700000762 | 24.8605000973 | 0.5053332647 |
多进程操作 | 53.8899999857 | 12.7840000391 | 0.5045000315 |
通过上面的结果,我们可以看到:
- 多线程在IO密集型的操作下似乎也没有很大的优势(也许IO操作的任务再繁重一些就能体现出优势),在CPU密集型的操作下明显地比单线程线性执行性能更差,但是对于网络请求这种忙等阻塞线程的操作,多线程的优势便非常显著了
- 多进程无论是在CPU密集型还是IO密集型以及网络请求密集型(经常发生线程阻塞的操作)中,都能体现出性能的优势。不过在类似网络请求密集型的操作上,与多线程相差无几,但却更占用CPU等资源,所以对于这种情况下,我们可以选择多线程来执行
011_Python中单线程、多线程和多进程的效率对比实验的更多相关文章
- Python中单线程、多线程和多进程的效率对比实验
GIL机制导致如下结果: Python的多线程程序并不能利用多核CPU的优势 (比如一个使用了多个线程的计算密集型程序只会在一个单CPU上面运行)python多线程适合io操作密集型的任务(如sock ...
- java中多种写文件方式的效率对比实验
一.实验背景 最近在考虑一个问题:“如果快速地向文件中写入数据”,java提供了多种文件写入的方式,效率上各有异同,基本上可以分为如下三大类:字节流输出.字符流输出.内存文件映射输出.前两种又可以分为 ...
- 8 并发编程-(线程)-多线程与多进程的区别&Thread对象的其他属性或方法
1.开启速度 在主进程下开启线程比 开启子进程快 # 1 在 主进程下开启线程 from threading import Thread def work(): print('hello') if ...
- 并发编程8 线程的创建&验证线程之间数据共享&守护线程&线程进程效率对比&锁(死锁/递归锁)
1.线程理论以及线程的两种创建方法 2.线程之间是数据共享的与join方法 3.多线程和多进程的效率对比 4.数据共享的补充线程开启太快 5.线程锁 互斥锁 同步锁 6.死锁现象和递归锁 7.守护线程 ...
- python3 多线程和多进程
一.线程和进程 1.操作系统中,线程是CPU调度和分派的基本单位,线程依存于程序中 2.操作系统中,进程是系统进行资源分配和调度的一个基本单位,一个程序至少有一个进程 3.一个进程由至少一个线程组成, ...
- 多线程 or 多进程?[转]
在Unix上编程采用多线程还是多进程的争执由来已久,这种争执最常见到在C/S通讯中服务端并发技术的选型上,比如WEB服务器技术中,Apache是 采用多进程的(perfork模式,每客户连接对应一个进 ...
- 多线程 or 多进程 (转强力推荐)
在Unix上编程采用多线程还是多进程的争执由来已久,这种争执最常见到在C/S通讯中服务端并发技术 的选型上,比如WEB服务器技术中,Apache是采用多进程的(perfork模式,每客户连接对应一个进 ...
- 在python中单线程,多线程,多进程对CPU的利用率实测以及GIL原理分析
首先关于在python中单线程,多线程,多进程对cpu的利用率实测如下: 单线程,多线程,多进程测试代码使用死循环. 1)单线程: 2)多线程: 3)多进程: 查看cpu使用效率: 开始观察分别执行时 ...
- Python 多线程、多进程 (三)之 线程进程对比、多进程
Python 多线程.多进程 (一)之 源码执行流程.GIL Python 多线程.多进程 (二)之 多线程.同步.通信 Python 多线程.多进程 (三)之 线程进程对比.多线程 一.多线程与多进 ...
随机推荐
- 在C#中使用忽略大小写的string.Contains方法
在C#中比较源字符串是否包含目标字符串,我们可以使用以下方法: source.Contains(target) source.IndexOf(target) >= 0; 相对而言 Contain ...
- linux添加C#运行环境
linux是不带C#的运行环境的,同样的还有.NET. 有一个叫做Mono的很好用http://www.go-mono.com/,有给docker,而且有环境的选择,要注意. 安好后有给样例的程序,编 ...
- alibaba / zeus 安装 图解
一.首先需要到https://github.com/alibaba/zeus下载相应的安装文件 二.解压缩导入到eclipse工程
- Flask入门之完整项目搭建
一.创建虚拟环境 1,新建虚拟环境 cmd中输入:mkvirtualenv 环境名 2,在虚拟环境安装项目运行所需要的基本模块 pip install flask==0.12.4 pip instal ...
- Centos7-yum部署配置LNMP+php-fgm,一台机器上部署
一.简介 1.了解nginx特性 请参考,https://www.cnblogs.com/zhangxingeng/p/10150955.html 2.LNMP:linux+nginx+mysql+p ...
- SpringCloud系列——Zuul 动态路由
前言 Zuul 是在Spring Cloud Netflix平台上提供动态路由,监控,弹性,安全等边缘服务的框架,是Netflix基于jvm的路由器和服务器端负载均衡器,相当于是设备和 Netflix ...
- [Redis]Redis的设计与实现-链表/字典/跳跃表
redis的设计与实现:1.假如有一个用户关系模块,要实现一个共同关注功能,计算出两个用户关注了哪些相同的用户,本质上是计算两个用户关注集合的交集,如果使用关系数据库,需要对两个数据表执行join操作 ...
- java学习笔记 线程的实现与同步
2019.4.2 线程实现的两种方式 继承线程,复写其中的run方法 实现runnable接口,复写run方法 使用: MyThread target = new MyThread(); new Th ...
- location.origin兼容IE
if (window["context"] == undefined) { if (!window.location.origin) { window.location.origi ...
- H5移动端rem适配
/** * 移动端自适应 */ <meta name="viewport" content="width=device-width,user-scalable=no ...