8个Python高效数据分析的技巧
一行代码定义List
下面是使用For循环创建列表和用一行代码创建列表的对比。
x = [1,2,3,4]
out = []
for item in x:
out.append(item**2)
print(out)
[1, 4, 9, 16]
# vs.
x = [1,2,3,4]
out = [item**2 for item in x]
print(out)
[1, 4, 9, 16]
Lambda表达式
厌倦了定义用不了几次的函数? Lambda表达式是你的救星! Lambda表达式用于在Python中创建小型,一次性和匿名函数对象。 它能替你创建一个函数。
lambda表达式的基本语法是:
lambda arguments: expression
请注意,只要有一个lambda表达式,就可以完成常规函数可以执行的任何操作。 你可以从下面的例子中,感受lambda表达式的强大功能:
double = lambda x: x * 2
print(double(5))
10
Map和Filter
一旦掌握了lambda表达式,学习将它们与Map和Filter函数配合使用,可以实现更为强大的功能。
具体来说,map通过对列表中每个元素执行某种操作并将其转换为新列表。 在本例中,它遍历每个元素并乘以2,构成新列表。 请注意,list()函数只是将输出转换为列表类型。
# Map
seq = [1, 2, 3, 4, 5]
result = list(map(lambda var: var*2, seq))
print(result)
[2, 4, 6, 8, 10]
Filter函数接受一个列表和一条规则,就像map一样,但它通过比较每个元素和布尔过滤规则来返回原始列表的一个子集。
# Filter
seq = [1, 2, 3, 4, 5]
result = list(filter(lambda x: x > 2, seq))
print(result)
[3, 4, 5]
Arange和Linspace
Arange返回给定步长的等差列表。 它的三个参数start、stop、step分别表示起始值,结束值和步长, 请注意,stop点是一个“截止”值,因此它不会包含在数组输出中。
# np.arange(start, stop, step)
np.arange(3, 7, 2)
array([3, 5])
Linspace和Arrange非常相似,但略有不同。 Linspace以指定数目均匀分割区间。 所以给定区间start和end,以及等分分割点数目num,linspace将返回一个NumPy数组。 这对绘图时数据可视化和声明坐标轴特别有用。
# np.linspace(start, stop, num)
np.linspace(2.0, 3.0, num=5)
array([ 2.0, 2.25, 2.5, 2.75, 3.0])
Axis代表什么?
在Pandas中,删除一列或在NumPy矩阵中求和值时,可能会遇到Axis。 我们用删除一列(行)的例子:
df.drop('Column A', axis=1)
df.drop('Row A', axis=0)
如果你想处理列,将Axis设置为1,如果你想要处理行,将其设置为0。 但为什么呢? 回想一下Pandas中的shape
df.shape
(# of Rows, # of Columns)
从Pandas DataFrame中调用shape属性返回一个元组,第一个值代表行数,第二个值代表列数。如果你想在Python中对其进行索引,则行数下标为0,列数下标为1,这很像我们如何声明轴值。
Concat,Merge和Join
如果您熟悉SQL,那么这些概念对您来说可能会更容易。 无论如何,这些函数本质上就是以特定方式组合DataFrame的方式。 在哪个时间跟踪哪一个最适合使用可能很困难,所以让我们回顾一下。
Concat允许用户在表格下面或旁边追加一个或多个DataFrame(取决于您如何定义轴)。
Merge将多个DataFrame合并指定主键(Key)相同的行。
Join,和Merge一样,合并了两个DataFrame。 但它不按某个指定的主键合并,而是根据相同的列名或行名合并。
Pandas Apply
Apply是为Pandas Series而设计的。如果你不太熟悉Series,可以将它想成类似Numpy的数组。
Apply将一个函数应用于指定轴上的每一个元素。 使用Apply,可以将DataFrame列(是一个Series)的值进行格式设置和操作,不用循环,非常有用!
df = pd.DataFrame([[4, 9],] * 3, columns=['A', 'B'])
df
A B
0 4 9
1 4 9
2 4 9
df.apply(np.sqrt)
A B
0 2.0 3.0
1 2.0 3.0
2 2.0 3.0
df.apply(np.sum, axis=0)
A 12
B 27
df.apply(np.sum, axis=1)
0 13
1 13
2 13
Pivot Tables
最后是Pivot Tables。 如果您熟悉Microsoft Excel,那么你也许听说过数据透视表。 Pandas内置的pivot_table函数以DataFrame的形式创建电子表格样式的数据透视表,,它可以帮助我们快速查看某几列的数据。 下面是几个例子:非常智能地将数据按照“Manager”分了组
pd.pivot_table(df, index=["Manager", "Rep"])
或者也可以筛选属性值
pd.pivot_table(df,index=["Manager","Rep"],values=["Price"])
8个Python高效数据分析的技巧的更多相关文章
- Python 高效编程技巧实战(2-1)如何在列表,字典, 集合中根据条件筛选数据
Python 高效编程技巧实战(2-1)如何在列表,字典, 集合中根据条件筛选数据 学习目标 1.学会使用 filter 借助 Lambda 表达式过滤列表.集合.元组中的元素: 2.学会使用列表解析 ...
- 今天整理了几个在使用python进行数据分析的常用小技巧、命令。
提高Python数据分析速度的八个小技巧 01 使用Pandas Profiling预览数据 这个神器我们在之前的文章中就详细讲过,使用Pandas Profiling可以在进行数据分析之前对数据进行 ...
- Python 代码性能优化技巧(转)
原文:Python 代码性能优化技巧 Python 代码优化常见技巧 代码优化能够让程序运行更快,它是在不改变程序运行结果的情况下使得程序的运行效率更高,根据 80/20 原则,实现程序的重构.优化. ...
- 利用python进行数据分析——(一)库的学习
总结一下自己对python常用包:Numpy,Pandas,Matplotlib,Scipy,Scikit-learn 一. Numpy: 标准安装的Python中用列表(list)保存一组值,可以用 ...
- 利用python进行数据分析--(阅读笔记一)
以此记录阅读和学习<利用Python进行数据分析>这本书中的觉得重要的点! 第一章:准备工作 1.一组新闻文章可以被处理为一张词频表,这张词频表可以用于情感分析. 2.大多数软件是由两部分 ...
- 参考《利用Python进行数据分析(第二版)》高清中文PDF+高清英文PDF+源代码
第2版针对Python 3.6进行全面修订和更新,涵盖新版的pandas.NumPy.IPython和Jupyter,并增加大量实际案例,可以帮助高效解决一系列数据分析问题. 第2版中的主要更新了Py ...
- 《利用Python进行数据分析·第2版》第四章 Numpy基础:数组和矢量计算
<利用Python进行数据分析·第2版>第四章 Numpy基础:数组和矢量计算 numpy高效处理大数组的数据原因: numpy是在一个连续的内存块中存储数据,独立于其他python内置对 ...
- 利用Python进行数据分析_Pandas_数据加载、存储与文件格式
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 1 pandas读取文件的解析函数 read_csv 读取带分隔符的数据,默认 ...
- 利用python进行数据分析PDF高清完整版免费下载|百度云盘|Python基础教程免费电子书
点击获取提取码:hi2j 内容简介 [名人推荐] "科学计算和数据分析社区已经等待这本书很多年了:大量具体的实践建议,以及大量综合应用方法.本书在未来几年里肯定会成为Python领域中技术计 ...
随机推荐
- 认识Js中的二进制数据
Blob 在项目中涉及到要对html原生的audio组件进行样式复写,因此需要重新实现audio的一些功能,比如下载.实现一个下载大致的思路是服务端返回一段音频的二进制数据,客户端将其存放在Blob中 ...
- 为 docker 中的 nginx 配置 https
没有 https 加持的网站会逐渐地被浏览器标记为不安全的,所以为网站添加 https 已经变得刻不容缓.对于商业网站来说,花钱购买 SSL/TLS 证书并不是什么问题.但对于个人用户来说,如果能有免 ...
- 痞子衡嵌入式:飞思卡尔i.MX RT系列MCU启动那些事(5)- 再聊eFUSE及其烧写方法
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是飞思卡尔i.MX RT系列MCU的eFUSE. 在i.MXRT启动系列第二篇文章 Boot配置(BOOT Pin, eFUSE) 里痞子 ...
- SpringCloud(2) 服务注册和发现Eureka Server
一.简介 EureKa在Spring Cloud全家桶中担任着服务的注册与发现的落地实现.Netflix在设计EureKa时遵循着AP原则,它基于REST的服务,用于定位服务,以实现云端中间层服务发现 ...
- xamarin.forms之实现ListView列表倒计时
做商城类APP时经常会遇到抢购倒计时的功能,之前做小区宝iOS的时候也有类似的功能,想着参考iOS做的思路,自定义一个Cell,在Cell中每秒刷新一下控件的文本值,但使用xamarin.forms实 ...
- [leetcode](4.21)4. 有效子数组的数目
给定一个整数数组 A,返回满足下面条件的 非空.连续 子数组的数目: 子数组中,最左侧的元素不大于其他元素. 示例 1: 输入:[1,4,2,5,3] 输出:11 解释:有 11 个有效子数组,分别是 ...
- 有关mysql实现oracle分析函数功能的方法
目前公司erp开发有一个脚本需求:对于收款合同审批单和收款合同(n:1),需要获取收款审批单中最新的一条审批记录来更新其对应的收款合同的相关信息. 难点主要在对相同类别的属性进行分组然后组内排序(分组 ...
- Django学习之一:Install Djongo 安装Djongo
Install Djongo 安装Djongo Djongo是基于python的web框架,自然安装最关心的是python解释器版本了. Prerequisites 安装条件 Python版本与Djo ...
- Vs2017 无法调试APP
其实一切都是扯,看看有没有主活动吧 症状:能部署安装,没有快捷方式,不启动调试.XARAMIN不能在XML中配置主活动,会自动根据[Activity(Label = "AA", ...
- BGP:我们不生产路由,而是路由的搬运工
1.BGP协议自身不能生产路由,它主要通过配置来将本地路由进行发布或者引入其他路由协议产生的路由. 有两种方法, 方法一.在BGP视图下,通过network命令将本地路由发布到BGP路由表中, 通过本 ...