先瞎扯几句

说起来我跟这个算法好像还有很深的渊源呢qwq。当时在学业水平考试的考场上,题目都做完了不会做,于是开始xjb出题。突然我想到这么一个题

看起来好像很可做的样子,然而直到考试完我都只想出来一个莫队的暴力。当时我想知道有没有比莫队更优的做法,和zbq讨论了半天也只能搞出一个$O(nlog^2n)$的平衡树启发式合并

然后!!我就把这题出给校内互测了!!没错,当时是用莫队当的标算!

结果!mjt用一个假的$O(n)$算法艹过去了因为数据特别水

后来我打算把这题出给另一场比赛,结果到了前一天晚上造数据的时候我发现不太对,然后把mjt的算法hack了。

去UOJ群里一问才知道这玩意儿是个dsu on tree的sb题。

当时我就这个表情

自己还是太年轻啊%>_<%

好了好了,来讲算法吧

Dsu on tree

简介

dsu on tree跟dsu(并查集)是没啥关系,可能是借用了一波启发式合并的思想??

它是用来解决一类树上询问问题,一般这种问题有两个特征

1、只有对子树的询问

2、没有修改

一般这时候就可以强上dsu on tree了

update:可能特征1不会很显然,就是说题目中不一定明确的问你子树$i$的答案,可能是把问题转化后需要算子树$i$的答案

算法流程

考虑暴力怎么写:遍历每个节点—把子树中的所有颜色暴力统计出来更新答案—消除该节点的贡献—继续递归

这肯定是$O(n^2)$的。

dsu on tree巧妙的利用了轻重链剖分的性质,把复杂度降到了$O(nlogn)$

啥啥啥?你不知道啥叫轻重链剖分?

一句话:对于树上的一个点,与其相连的边中,连向的节点子树大小最大的边叫做重边,其他的边叫轻边

dsu on tree的算法流程是这样的:

对于节点$i$:

  • 遍历每一个节点

    • 递归解决所有的轻儿子,同时消除递归产生的影响
  • 递归重儿子,不消除递归的影响
  • 统计所有轻儿子对答案的影响
  • 更新该节点的答案
  • 删除所有轻儿子对答案的影响

主体框架长这样

可能你先在会想:为什么都是暴力统计答案?这样复杂度不是$O(n^2)$的么?

那简单的来证一下这东西的复杂度

复杂度

性质:一个节点到根的路径上轻边个数不会超过$logn$条

证明:

设根到该节点有$x$条轻边,该节点的大小为$y$,根据轻重边的定义,轻边所连向的点的大小不会成为该节点总大小的一般。

这样每经过一条轻边,$y$的上限就会$ / 2$,因此$y < \frac{n}{2^x}$

因为$n > 2^x$,所以$x < logn$

然而这条性质并不能解决问题。

我们考虑一个点会被访问多少次

一个点被访问到,只有两种情况

1、在暴力统计轻边的时候访问到。

根据前面的性质,该次数$< logn$

2、通过重边 / 在遍历的时候被访问到

显然只有一次

如果统计一个点的贡献的复杂度为$O(1)$的话,该算法的复杂度为$O(nlogn)$

模板题

cf600E. Lomsat gelral

题意:给出一个树,求出每个节点的子树中出现次数最多的颜色的编号和

dsu on tree的模板题,暴力统计即可

#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int MAXN = 1e5 + ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int N, col[MAXN], son[MAXN], siz[MAXN], cnt[MAXN], Mx, Son;
LL sum = , ans[MAXN];
vector<int> v[MAXN];
void dfs(int x, int fa) {
siz[x] = ;
for(int i = ; i < v[x].size(); i++) {
int to = v[x][i];
if(to == fa) continue;
dfs(to, x);
siz[x] += siz[to];
if(siz[to] > siz[son[x]]) son[x] = to;//轻重链剖分
}
}
void add(int x, int fa, int val) {
cnt[col[x]] += val;//这里可能会因题目而异
if(cnt[col[x]] > Mx) Mx = cnt[col[x]], sum = col[x];
else if(cnt[col[x]] == Mx) sum += (LL)col[x];
for(int i = ; i < v[x].size(); i++) {
int to = v[x][i];
if(to == fa || to == Son) continue;
add(to, x, val);
}
}
void dfs2(int x, int fa, int opt) {
for(int i = ; i < v[x].size(); i++) {
int to = v[x][i];
if(to == fa) continue;
if(to != son[x]) dfs2(to, x, );//暴力统计轻边的贡献,opt = 0表示递归完成后消除对该点的影响
}
if(son[x]) dfs2(son[x], x, ), Son = son[x];//统计重儿子的贡献,不消除影响 add(x, fa, ); Son = ;//暴力统计所有轻儿子的贡献
ans[x] = sum;//更新答案
if(!opt) add(x, fa, -), sum = , Mx = ;//如果需要删除贡献的话就删掉
}
int main() {
N = read();
for(int i = ; i <= N; i++) col[i] = read();
for(int i = ; i <= N - ; i++) {
int x = read(), y = read();
v[x].push_back(y); v[y].push_back(x);
}
dfs(, );
dfs2(, , );
for(int i = ; i <= N; i++) printf("%I64d ", ans[i]);
return ;
}

一道比较有意思的题

不知道老师从哪儿弄的。。。

我的题解:https://www.cnblogs.com/zwfymqz/p/9687296.html

官方题解:

参考资料

[Codeforces600E]Lomsat gelral(dsu on the tree)

[trick]dsu on tree

dsu on tree入门的更多相关文章

  1. dsu on tree 入门

    Dus on tree 树上并查集?. 啊这,并不是的啦,他利用了树上启发式合并的思想. 他主要解决不带修改且主要询问子树信息的树上问题. 先来看到例题,CF600E . 这不就是树上莫队的经典题吗? ...

  2. 【CodeForces】600 E. Lomsat gelral (dsu on tree)

    [题目]E. Lomsat gelral [题意]给定n个点的树,1为根,每个点有一种颜色ci,一种颜色占领一棵子树当且仅当子树内没有颜色的出现次数超过它,求n个答案——每棵子树的占领颜色的编号和Σc ...

  3. [探究] dsu on tree,一类树上离线问题的做法

    dsu on tree. \(\rm 0x01\) 前言\(\&\)技术分析 \(\bold{dsu~on~tree}\),中文别称"树上启发式合并"(虽然我并不承认这种称 ...

  4. dsu on tree(树上启发式合并)

    简介 对于一颗静态树,O(nlogn)时间内处理子树的统计问题.是一种优雅的暴力. 算法思想 很显然,朴素做法下,对于每颗子树对其进行统计的时间复杂度是平方级别的.考虑对树进行一个重链剖分.虽然都基于 ...

  5. CF 741D. Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths [dsu on tree 类似点分治]

    D. Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths CF741D 题意: 一棵有根树,边上有字母a~v,求每个子树中最长的边,满 ...

  6. CF 570D. Tree Requests [dsu on tree]

    传送门 题意: 一棵树,询问某棵子树指定深度的点能否构成回文 当然不用dsu on tree也可以做 dsu on tree的话,维护当前每一个深度每种字母出现次数和字母数,我直接用了二进制.... ...

  7. [dsu on tree]【学习笔记】

    十几天前看到zyf2000发过关于这个的题目的Blog, 今天终于去学习了一下 Codeforces原文链接 dsu on tree 简介 我也不清楚dsu是什么的英文缩写... 就像是树上的启发式合 ...

  8. CF 375D. Tree and Queries【莫队 | dsu on tree】

    题意: 一棵树,询问一个子树内出现次数$≥k$的颜色有几种 强制在线见上一道 用莫队不知道比分块高到哪里去了,超好写不用调7倍速度!!! 可以用分块维护出现次数这个权值,实现$O(1)-O(\sqrt ...

  9. dsu on tree 树上启发式合并 学习笔记

    近几天跟着dreagonm大佬学习了\(dsu\ on\ tree\),来总结一下: \(dsu\ on\ tree\),也就是树上启发式合并,是用来处理一类离线的树上询问问题(比如子树内的颜色种数) ...

随机推荐

  1. idea maven cannot resolve symbol http报错问题解决

    学习SpringMVC的过程中,在idea中使用maven管理依赖.在class中使用 javax.servlet.http.HttpServletRequest的时候,报错:cannot resol ...

  2. LeetCode编程训练 - 滑动窗口(Sliding Window)

    滑动窗口基础 滑动窗口常用来解决求字符串子串问题,借助map和计数器,其能在O(n)时间复杂度求子串问题.滑动窗口和双指针(Two pointers)有些类似,可以理解为往同一个方向走的双指针.常用滑 ...

  3. C# 控制台应用程序中输出彩色字体

    using System; class Example { public static void Main() { // Get a string array with the names of Co ...

  4. Java二叉树实现及递归与非递归遍历实现

    树的遍历分两种:1.深度优先遍历 1.1 递归算法实现 2.2 非递归算法实现(使用栈存储)2.广度优先遍历(使用队列存储) import java.util.*; /** * 类功能描述: 二叉树遍 ...

  5. Spring使用支付宝扫码支付

    前一段一直在研究支付宝的扫码支付,不得不说,支付宝的文档写的真是一个烂(起码在下刚开始看的时候是mengbi的).文档上面的示例和demo里面的示例长的完全不一样.往往文档上面的例子很简单,而demo ...

  6. macOS 10.14虚拟机安装教程

    windows10下安装vmware14.0以及macOS 10.14图文详解 工具/原料   windows10 vmware 14.0 macOS 10.14懒人版 mac补丁unlocker工具 ...

  7. [Swift]LeetCode923.三数之和的多种可能 | 3Sum With Multiplicity

    Given an integer array A, and an integer target, return the number of tuples i, j, k  such that i &l ...

  8. CentOS Too Many Open Files 解决

    问题 在使用 WRK 对应用服务进行压测的时候,提示 "too many open files" 信息,导致无法启动测试. 原因 CentOS 7.x 默认的打开文件数目限制为 1 ...

  9. 【Spark篇】---Spark中yarn模式两种提交任务方式

    一.前述 Spark可以和Yarn整合,将Application提交到Yarn上运行,和StandAlone提交模式一样,Yarn也有两种提交任务的方式. 二.具体      1.yarn-clien ...

  10. JVM基础系列第15讲:JDK性能监控命令

    查看虚拟机进程:jps 命令 jps 命令可以列出所有的 Java 进程.如果 jps 不加任何参数,可以列出 Java 程序的进程 ID 以及 Main 函数短名称,如下所示. $ jps 6540 ...