题目:

Description

Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments on it, all projected segments have at least one point in common.

Input

Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing a positive integer n ≤ 100 showing the number of segments. After that, n lines containing four real numbers x1 y1 x2 y2 follow, in which (x1y1) and (x2y2) are the coordinates of the two endpoints for one of the segments.

Output

For each test case, your program must output "Yes!", if a line with desired property exists and must output "No!" otherwise. You must assume that two floating point numbers a and b are equal if |a - b| < 10-8.

Sample Input

3
2
1.0 2.0 3.0 4.0
4.0 5.0 6.0 7.0
3
0.0 0.0 0.0 1.0
0.0 1.0 0.0 2.0
1.0 1.0 2.0 1.0
3
0.0 0.0 0.0 1.0
0.0 2.0 0.0 3.0
1.0 1.0 2.0 1.0

Sample Output

Yes!
Yes!
No!

题意:给出n条线段 判断是否存在一条直线 使所有线段在这条直线上的投影都有至少一个公共点
思路:经过一些奇妙的转变 可以将题目转换为从所有线段中任选两个端点组成的直线是否可以穿过所有的线段 需要对选取的两个端点进行去重

代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm> using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int inf=0x3f3f3f3f;
const int maxn=;
const double eps=1e-;
int t,n;
double x,y,xx,yy; int dcmp(double x){
if(fabs(x)<eps) return ;
if(x<) return -;
return ;
} struct Point{
double x,y;
Point(){}
Point(double _x,double _y){
x=_x,y=_y;
}
Point operator + (const Point &b) const {
return Point(x+b.x,y+b.y);
}
Point operator - (const Point &b) const {
return Point(x-b.x,y-b.y);
}
double operator * (const Point &b) const {
return x*b.x+y*b.y;
}
double operator ^ (const Point &b) const {
return x*b.y-y*b.x;
}
}; struct Line{
Point s,e;
Line(){}
Line(Point _s,Point _e){
s=_s,e=_e;
}
}line[maxn]; double xmult(Point p0,Point p1,Point p2){
return (p1-p0)^(p2-p0);
} bool Seg_inter_line(Line l1,Line l2){
return dcmp(xmult(l2.s,l1.s,l1.e))*dcmp(xmult(l2.e,l1.s,l1.e))<=;
} double dist(Point a,Point b){
return sqrt((b-a)*(b-a));
} bool check(Line l1,int n){
if(dcmp(dist(l1.s,l1.e))==) return false; //判断重复点
for(int i=;i<n;i++)
if(Seg_inter_line(l1,line[i])==false)
return false;
return true;
} int main(){
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=;i<n;i++){
scanf("%lf%lf%lf%lf",&x,&y,&xx,&yy);
line[i]=Line(Point(x,y),Point(xx,yy));
}
bool flag=false;
for(int i=;i<n;i++)
for(int j=;j<n;j++)
if(check(Line(line[i].s,line[j].s),n) || check(Line(line[i].e,line[j].e),n) || check(Line(line[i].s,line[j].e),n) || check(Line(line[i].e,line[j].s),n)){
flag=true;
break;
}
if(flag) printf("Yes!\n");
else printf("No!\n");
}
return ;
}

 

POJ 3304 Segments(直线)的更多相关文章

  1. POJ 3304 Segments[直线与线段相交]

    Segments Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13514   Accepted: 4331 Descrip ...

  2. POJ 3304 Segments(计算几何:直线与线段相交)

    POJ 3304 Segments 大意:给你一些线段,找出一条直线可以穿过全部的线段,相交包含端点. 思路:遍历全部的端点,取两个点形成直线,推断直线是否与全部线段相交,假设存在这种直线,输出Yes ...

  3. POJ 3304 Segments 判断直线和线段相交

    POJ 3304  Segments 题意:给定n(n<=100)条线段,问你是否存在这样的一条直线,使得所有线段投影下去后,至少都有一个交点. 思路:对于投影在所求直线上面的相交阴影,我们可以 ...

  4. POJ 3304 Segments(判断直线与线段是否相交)

    题目传送门:POJ 3304 Segments Description Given n segments in the two dimensional space, write a program, ...

  5. POJ 3304 Segments (判断直线与线段相交)

    题目链接:POJ 3304 Problem Description Given n segments in the two dimensional space, write a program, wh ...

  6. POJ 3304 Segments 基础线段交判断

    LINK 题意:询问是否存在直线,使得所有线段在其上的投影拥有公共点 思路:如果投影拥有公共区域,那么从投影的公共区域作垂线,显然能够与所有线段相交,那么题目转换为询问是否存在直线与所有线段相交.判断 ...

  7. POJ 3304 Segments (直线和线段相交判断)

    Segments Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7739   Accepted: 2316 Descript ...

  8. poj 3304 Segments 线段与直线相交

    Segments Time Limit: 1000MS   Memory Limit: 65536K       Description Given n segments in the two dim ...

  9. poj 3304 Segments(计算直线与线段之间的关系)

    Segments Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10921   Accepted: 3422 Descrip ...

随机推荐

  1. Linux下时钟框架实践---一款芯片的时钟树配置

    关键词:时钟.PLL.Mux.Divider.Gate.clk_summary等. 时钟和电源是各种设备的基础设施,整个时钟框架可以抽象为几种基本的元器件:负责提供晶振 Linux内核提供了良好的CC ...

  2. WinForm程序完全退出总结

    this.Close();   只是关闭当前窗口,若不是主窗体的话,是无法退出程序的,另外若有托管线程(非主线程),也无法干净地退出: Application.Exit();  强制所有消息中止,退出 ...

  3. 记一次Maven编译IKAnalyzer失败及解决办法

    下载了一个开源项目,maven形式组织的,其中有一个依赖包是IKAnalyzer. 由于mvnrepository中不存在IKAnalyzer的坐标,因此该依赖包需要自己下载安装到本地maven仓库才 ...

  4. mybatis的foreach标签

    今天写sql发现了一点问题,乱弄了好久算是搞定了.关于mybatis的批量插入使用foreach插入形式为: insert into role_privilege( role_id, privileg ...

  5. JS 优化条件语句的5个技巧

    前言 在使用 JavaScript 的时候,有时我们会处理大量条件语句,这里有5个技巧帮助我们编写更简洁的条件语句. 一.对多个条件使用 Array.includes 例子: function con ...

  6. python和anacoda安装第三方库的位置

    查看已安装库及版本号,命令行pip list 安装第三方库位置:

  7. Linux重启命令

    Linux和windows不同,linux后台运行着许多进程,所以强制关机可能会导致进程的数据丢失使系统处于不稳定的状态.甚至在有的系统中会损坏硬件设备.而在系统关机前使用shutdown命令,系统管 ...

  8. Git各个状态之间转换指令总结

    基本状态标识 A- = untracked 未跟踪 A = tracked 已跟踪未修改 A+ = modified - 已修改未暂存 B = staged - 已暂存未提交 C = committe ...

  9. Android——分割线中夹文字

    内容不多,只是感觉平时很容易遇上,那就做个笔记吧! 其实很简单,如下: <RelativeLayout android:layout_width="match_parent" ...

  10. android调用plus报错plus is not defined

    由于plus 加载需要时间,我们使用plus 的时候应该提前判断是否已经加载好,添加监听 document.addEventListener("plusready",functio ...