[物理学与PDEs]第3章习题6 Lagrange 坐标下的一维理想磁流体力学方程组的数学结构
试讨论 Lagrange 形式下的一维理想磁流体力学方程组 (5. 33)-(5. 39) 的类型.
解答: 由 (5. 33), (5. 39) 知 $$\bex 0=\cfrac{\p p}{\p \tau}\sex{\cfrac{\p \tau}{\p t'}-\cfrac{\p u_1}{\p m}}+\cfrac{\p p}{\p S}\cfrac{\p S}{\p t'} =\cfrac{\p p}{\p t'}-p'(\tau)\cfrac{\p u_1}{\p m}, \eex$$ 而 $$\bex \cfrac{-1}{p'(\tau)}\cfrac{\p p}{\p t'}+\cfrac{\p u_1}{\p m}=0. \eex$$ 于是 (5. 33)-(5. 39) 为 $$\beex \bea \cfrac{-1}{p'(\tau)}\cfrac{\p p}{\p t'}+\cfrac{\p u_1}{\p m} &=0,\\ \cfrac{\mu_0}{\rho}\cfrac{\p H_2}{\p t'} +\mu_0H_2\cfrac{\p u_1}{\p m}-\mu_0H_1\cfrac{\p u_2}{\p m} &=0,\\ \cfrac{\mu_0}{\rho}\cfrac{\p H_3}{\p t'} +\mu_0H_3\cfrac{\p u_1}{\p m} -\mu_0H_1\cfrac{\ pu_3}{\p m} &=0,\\ \cfrac{\p u_1}{\p t'} +\cfrac{\p\rho}{\p m} +\mu_0H_2\cfrac{\p H_2}{\p m} +\mu_0H_3\cfrac{\p H_3}{\p m}&=F_1,\\ \cfrac{\p u_2}{\p t'}-\mu_0H_1\cfrac{\p H_2}{\p m}&=F_2,\\ \cfrac{\p u_3}{\p t'}-\mu_0H_1\cfrac{\p H_3}{\p m}&=F_3,\\ \cfrac{\p S}{\p t'}&=0; \eea \eeex$$ 其可化为 $$\bex A(U)\cfrac{\p U}{\p t'}+B(U)\cfrac{\p U}{\p m}=C, \eex$$ 其中 $$\beex \bea U&=(p,H_2,H_3,u_1,u_2,u_3,S)^T,\\ A(U)&=\diag\sex{\cfrac{-1}{p'(\tau)},\cfrac{\mu_0}{\rho},\cfrac{\mu_0}{\rho}, 1,1,1,1},\\ B(U)&=\sex{\ba{ccccccc} 0&0&0&1&0&0&0\\ 0&0&0&\mu_0H_2&-\mu_0H_1&0&0\\ 0&0&0&\mu_0H_3&0&-\mu_0H_1&0\\ 1&\mu_0H_2\mu_0H_3&0&0&0&0\\ 0&-\mu_0H_1&0&0&0&0&0\\ 0&0&-\mu_0H_1&0&0&0&0\\ 0&0&0&0&0&0&0 \ea},\\ C&=(0,0,0,F_1,F_2,F_3,0)^T. \eea \eeex$$ 故 Lagrange 形式下的一维理想磁流体力学方程组 (5. 33)-(5. 39) 是一阶对称双曲组.
[物理学与PDEs]第3章习题6 Lagrange 坐标下的一维理想磁流体力学方程组的数学结构的更多相关文章
- [物理学与PDEs]第3章习题5 一维理想磁流体力学方程组的数学结构
试将一维理想磁流体力学方程组 (5. 10)-(5. 16) 化为一阶拟线性对称双曲组的形式. 解答: 由 (5. 12),(5. 16) 知 $$\beex \bea 0&=\cfrac{\ ...
- [物理学与PDEs]第3章习题参考解答
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...
- [物理学与PDEs]第2章习题11 Lagrange 形式的一维理想流体力学方程组在强间断线上的间断连接条件
对由第 10 题给出的 Lagrange 形式的一维理想流体力学方程组, 给出解在强间断线上应满足的间断连接条件 (假设体积力 $F\equiv 0$). 解答: $$\beex \bea \sez{ ...
- [物理学与PDEs]第1章习题12 Coulomb 规范下电磁场的标势、矢势满足的方程
试给出在 Coulomb 规范下, 电磁场的标势 $\phi$ 与矢势 ${\bf A}$ 所满足的方程. 解答: 真空中的 Maxwell 方程组为 $$\bee\label{1_10_12:eq} ...
- [物理学与PDEs]第1章习题3 常场强下电势的定解问题
在一场强为 ${\bf E}_0$ (${\bf E}_0$ 为常向量) 的电场中, 置入一个半径为 $R$ 的导电球体, 试导出球外电势所满足的方程及相应的定解条件. 解答: 设导电球体为 $B_R ...
- [物理学与PDEs]第1章习题参考解答
[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...
- [物理学与PDEs]第2章习题参考解答
[物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...
- [物理学与PDEs]第4章习题参考解答
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...
- [物理学与PDEs]第5章习题参考解答
[物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...
随机推荐
- Python基础——0前言
python虽然这几年才兴起,但是已经是一门“老”语言了. python的诞生历史也很有趣.Python的创始人为Guido van Rossum(龟叔).1989年圣诞节期间,在阿姆斯特丹,Guid ...
- Mockito单元测试
Mockito简介 Mockito是一个单元测试框架,需要Junit的支持.在我们的项目中,都存在相当多的依赖关系,当我们在测试某一个业务相关的接口或则方法时,绝大多数时候是没有办法或则很难去添加所有 ...
- Log4j配置文件详解及实例
1 ) . 配置根 Logger ,其语法为: log4j.rootLogger = [ level ] , appenderName, appenderName, … 其中, level 是日 ...
- 【Python 22】52周存钱挑战2.0(列表list和math函数)
1.案例描述 按照52周存钱法,存钱人必须在一年52周内,每周递存10元.例如,第一周存10元,第二周存20元,第三周存30元,直到第52周存520元. 记录52周后能存多少钱?即10+20+30+. ...
- Python爬虫【实战篇】百度贴吧爬取页面存到本地
先上代码 import requests class TiebaSpider: def __init__(self, tieba_name): self.tieba_name = tieba_name ...
- 单元测试(qunit)
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http ...
- 24 python初学(异常)
try, except, else, finally执行顺序:1. 先执行 try 里面的代码块,如果发生异常就会去捕获. 2. 没有错误就会执行 else 里面的信息. 3. 无论怎样都会执行 fi ...
- copy 和 deepcopy的区别
import copy a = [1, 2, 3, 4, ['a', 'b']] b = a # 引用,除非直接给a重新赋值,否则a变则b变,b变则a变 c = copy.copy(a) # 浅复制, ...
- AI MobileNet
MobileNet,是针对移动和嵌入式设备的一类高效模型,基于流线型(streamlined)架构,使用深度可分离卷积(depthwise separable convolution)来构建轻量级深度 ...
- Photoshop合成雪景天使美女照片
一.新建一个800 * 426的文件,打开人物素材把不要的东西删除掉,因为白雪景色很白,就直接涂上白色就可以了,然后把人像移动到我要的角度. 二.对人物图层按Ctrl + M 调整曲线,参数设置如下图 ...