LOJ

BZOJ

洛谷

又来发良心题解啦


\(Description\)

给定一个序列\(A_i\)。求有多少个子区间,满足该区间众数出现次数大于区间长度的一半。

\(n\leq5\times10^5,\ 0\leq A_i\lt n\)。

\(Solution\)

考虑\(x\)作为众数合法的区间有哪些。令\(B_i=[A_i=x]\),对\(B_i\)求个前缀和\(s_i\)。那么区间\([l,r]\)合法当且仅当\(s_r-s_{l-1}\gt0\)。

其实就是对\(s\)求顺序对个数。用树状数组或者值域线段树可以\(O(n\log n)\),那么总复杂度是\(O(n^2\log n)\)的(枚举\(O(n)\)次\(x\))。(但是这样可以过\(type=2\)的点了)

考虑枚举\(x\)作为众数时,\(B_i,s_i\)有什么性质。

\(Sol1\)

我们发现\(B\)序列会有少数\(1\)和很多连续的\(-1\)段。假设其中一段极长\(-1\)段是\([l,r]\),\(s_{l-1}=sum\),因为\(s_i\)是递减的,容易发现对这段区间,依次要查的区间是\([-n,sum-2],[-n,sum-3],...\)可以一起查。这段区间的更新就是对\([sum-1,sum-(r-l+1)]\)整体\(+1\)。

考虑查询的时候具体是求什么。设\(T_i\)为树状数组/线段树上下标\(i\)位置的值,\(len=r-l+1\)。考虑\(T_i\)被统计的次数,有$$Ans=\sum_{i=-n}{sum-1-len}len*T_i+\sum_{i=sum-len}{sum-2}T_i(sum-1-i)$$

所以用线段树维护\(\sum i*A_i\)的和就好啦。复杂度\(O(n\log n)\)。

树状数组也可以维护(区间加等差数列?),然而没看懂怎么实现,可以看这篇博客orz。

\(Sol2\)

另一种做法是TA爷(?好像都这么叫)的做法

还是考虑优化枚举众数\(x\)后的求解方法。

因为序列里会有很多\(-1\),称能够出现和为正的区间叫合法区间。那么\(i\)能作为某个极长合法区间的右端点\(r\)当且仅当,\(B_l+B_{l+1}+..+B_i=0\),且\(i\)后面的最大前缀和非正。左端点同理。

怎么找呢。就是拿\(+1\)往左右推,遇到\(-1\)就用\(+1\)填,没有\(+1\)了就结束。这样会将序列分割成一段段小区间,每段小区间是合法的。(不知道怎么说.jpg)

不难发现对所有数枚举这些小区间是\(O(n)\)的。所以拿上面那个\(O(n^2\log n)\)的算法直接分别处理这些小区间就好了。复杂度\(O(n\log n)\)。

就是单点加区间查,可以直接树状数组。

\(Sol3\)

有种(感觉比较暴力的)分治做法。

设当前区间是\([l,r]\),中点为\(mid\)。注意到一个性质是,若\(x\)是区间\([l,r]\)的众数,那么对于任意\(k\in[l,r)\),\(x\)至少是区间\([l,k]\)或区间\((k+1,r]\)的众数。那么取\(k=mid\),就可以求出所有经过\(mid\)的区间中,可能作为众数的数有哪些。注意一个区间的众数只有\(O(\log)\)个。

然后就可以枚举每个众数,看它的子区间有哪些。从\(mid\)往左往右扫两次就差不多惹。

复杂度\(O(n\log^2n)\)。实际跑起来挺优秀的叭。(可能还比\(Sol2\)优?)

似乎还有\(O(n)\)的?emm见LOJ统计叭。

因为偷懒代码只写了第二种。


//17424kb	2664ms
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
#define MAXIN 500000
//#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=5e5+5; int beg[N],ed[N],pre[N],nxt[N],A[N],B[N];
bool tag[N];
char IN[MAXIN],*SS=IN,*TT=IN;
struct BIT
{
int D,n,t[N<<1];
#define lb(x) (x&-x)
void Add(int p,int v)
{
for(p+=D; p<=n; p+=lb(p)) t[p]+=v;
}
int Query(int p)
{
int res=0;
for(p+=D; p; p^=lb(p)) res+=t[p];
return res;
}
}T; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
} int main()
{
int n=read(); read();
for(int i=1; i<=n; ++i) A[i]=read();
for(int i=1; i<=n; ++i) pre[i]=ed[A[i]], ed[A[i]]=i;
for(int i=n; i; --i) nxt[i]=beg[A[i]], beg[A[i]]=i;
LL ans=0; T.D=n, T.n=n<<1, T.Add(0,1);
for(int x=0; x<n; ++x)
{
if(!beg[x]) continue;
for(int i=beg[x]; i; )
{
int p=i; B[p]=1;//
for(int t=1; p<=n&&t>=0; ++p,t+=B[p]=(A[p]==x?1:-1)) tag[p]=1;
while(i && i<p) i=nxt[i];
}
for(int i=ed[x]; i; )
{
int p=i; B[p]=1;
for(int t=1; p&&t>=0; --p,t+=B[p]=(A[p]==x?1:-1)) tag[p]=1;
while(i>p) i=pre[i];
}
for(int i=beg[x]; i; )
{
int p=i;
while(tag[p-1]) --p;
int tmp=p,t=0;
while(p<i) T.Add(--t,1), ++p;//这部分显然没有Query的必要。
while(tag[p]) T.Add(t+=B[p],1), ans+=T.Query(t-1), ++p;
p=tmp,t=0;
while(p<i) T.Add(--t,-1), tag[p++]=0;
while(tag[p]) T.Add(t+=B[p],-1), tag[p++]=0;
while(i && i<=p) i=nxt[i];//<=
}
}
printf("%lld\n",ans); return 0;
}

BZOJ.5110.[CodePlus2017]Yazid 的新生舞会(线段树/树状数组/分治)的更多相关文章

  1. 【BZOJ5110】[CodePlus2017]Yazid 的新生舞会 线段树

    [BZOJ5110][CodePlus2017]Yazid 的新生舞会 Description Yazid有一个长度为n的序列A,下标从1至n.显然地,这个序列共有n(n+1)/2个子区间.对于任意一 ...

  2. bzoj5110: [CodePlus2017]Yazid 的新生舞会

    Description Yazid有一个长度为n的序列A,下标从1至n.显然地,这个序列共有n(n+1)/2个子区间.对于任意一个子区间[l,r] ,如果该子区间内的众数在该子区间的出现次数严格大于( ...

  3. 【BZOJ5110】[CodePlus2017]Yazid 的新生舞会

    题解: 没笔的时候我想了一下 发现如果不是出现一半次数而是k次,并不太会做 然后我用前缀和写了一下发现就是维护一个不等式: 于是就可以随便维护了

  4. 【bzoj5110】[CodePlus2017]Yazid 的新生舞会 Treap

    题目描述 求一个序列所有的子区间,满足区间众数的出现次数大于区间长度的一半. 输入 第一行2个用空格隔开的非负整数n,type,表示序列的长度和数据类型.数据类型的作用将在子任务中说明. 第二行n个用 ...

  5. 「CodePlus 2017 11 月赛」Yazid 的新生舞会(树状数组/线段树)

    学习了新姿势..(一直看不懂大爷的代码卡了好久T T 首先数字范围那么小可以考虑枚举众数来计算答案,设当前枚举到$x$,$s_i$为前$i$个数中$x$的出现次数,则满足$2*s_r-r > 2 ...

  6. luogu P4062 [Code+#1]Yazid 的新生舞会(线段树+套路)

    今天原来是平安夜啊 感觉这题是道好题. 一个套路枚举权值\(x\),把权值等于\(x\)的设为1,不等于的设为-1,然后问题转化为多少个区间权值和大于. 发现并不是很好做,还有一个套路,用前缀和查分来 ...

  7. 【线段树】【P4062】 [Code+#1]Yazid 的新生舞会

    Description 给定一个长度为 \(n\) 的序列,求有多少子区间满足区间众数严格大于区间长度的一半.如果区间有多个出现次数最多且不同的数则取较小的数为众数. Limitation 对于全部的 ...

  8. 洛谷 P4062 - [Code+#1]Yazid 的新生舞会(权值线段树)

    题面传送门 题意: 给出一个序列 \(a\),求 \(a\) 有多少个子区间 \([l,r]\),满足这个区间中出现次数最多的数出现次数 \(>\dfrac{r-l+1}{2}\) \(1 \l ...

  9. [loj 6253] Yazid的新生舞会

    (很久之前刷的题现在看起来十分陌生a) 题意: 给你一个长度为n的序列A,定义一个区间$[l,r]$是“新生舞会的”当且仅当该区间的众数次数严格大于$\frac{r-l+1}{2}$,求有多少子区间是 ...

随机推荐

  1. 全基因组关联分析(GWAS)扫不出信号怎么办(文献解读)

    假如你的GWAS结果出现如下图的时候,怎么办呢?GWAS没有如预期般的扫出完美的显著信号,也就没法继续发挥后续研究的套路了. 最近,nature发表了一篇文献“Common genetic varia ...

  2. 2018-2019-2 《Java程序设计》第3周学习总结

    20175319 2018-2019-2 <Java程序设计>第3周学习总结 教材学习内容总结 第三周通过课本与蓝墨云上的视频学习了<Java2实用教程>第四章类与对象 成功激 ...

  3. react实战项目开发(1) 搭建react开发环境初始化项目(Create-react-app)

    前言 Create React App npm install -g create-react-app create-react-app my-app cd my-app npm start 执行命令 ...

  4. Aurora — 一个在 MSOffice 内输入 LaTeX 公式的很好用插件

    from http://blog.csdn.net/GarfieldEr007/article/details/51452986 工具名称:Aurora2x  (下载) 压缩包内有详细的安装说明. 刚 ...

  5. 5组I/O函数的比较

  6. 代码,java_web

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  7. java应用的优化【转】

    XX银行网银系统是一套全新的对公业务渠道类系统,经过两年的建设,将逐步对外提供服务. 该系统融合了原来多个对公渠道系统,并发量是以前多个系统之和,吞吐量要求将大幅上升.为了使广大对公客户使用系统时获得 ...

  8. codeforces 893F - Physical Education Lessons 动态开点线段树合并

    https://codeforces.com/contest/893/problem/F 题意: 给一个有根树, 多次查询,每次查询对于$x$i点的子树中,距离$x$小于等于$k$的所有点中权值最小的 ...

  9. setTimeout 第三个参数秒懂

    好吧,假设你们都是从 ES6 里 promise 发现 setTimeout 还有第三个参数的,下面讲讲到底是干嘛的 setTimeout 第三个及之后的参数作用:定时器启动时候,第三个以后的参数是作 ...

  10. Diango 框架起步

    一.命令行搭建Django项目 安装django # 在指定解释器环境下安装django 1.11.9# 在真实python3环境下: pip3 install django==1.11.9# 在虚拟 ...