Luogu · 传送门

Orz THU众大佬,lct(注意不是link-cut-tree,是一个大佬)


这道题很容易让人联想到 最短路,但是最短路需要先 建图

暴力建出所有边的算法显然是不可行的,因为这样会建出 \(O(n^2 + m)\) 条边;

那么我们要考虑能不能 减少一些边 ,使边的数量可以接受。

从哪里入手减少边的数量呢?异或或许是一个不错的切入口。

举个栗子:

假设我们要从 \(001_2\) 到 \(010_2\),我们要花费 \(2^0 + 2^1\) 的费用;

但是,最短路有一个 优越的性质,我们可以把边拆开来,可以先从 \(001_2\) 到 \(000_2\),再从 \(000_2\) 到 \(010_2\),费用是一样的

这样我们对于每个点 \(i\),只需要建 \(i\) 到 \(i \ XOR \ 2^k\) 的边,之后 Dijkstra 就可以了哈。

需要注意的是 边界情况:从 \(i\) 到 \(j\) 经过的中间点可能超过 \(n\),对此有 2 种处理方法:

  1. 建边和 Dijkstra 的范围调整为 \([0,n]\)
  2. 建边和 Dijkstra 的范围调整为 \([1, 2^k-1],k = min \{ k \ | \ n \leq 2^k -1 \}\)

方法 1 的代码

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
 
const int maxn = 100007;
const int maxm = 2500007;
int n, m, c;
int edgenum, head[maxn], nxt[maxm], vet[maxm], val[maxm];
inline void addedge(int u, int v, int w){
    ++edgenum;
    vet[edgenum] = v;
    val[edgenum] = w;
    nxt[edgenum] = head[u];
    head[u] = edgenum;
}
 
inline int read(){
    int f = 1, val = 0; char ch = getchar();
    while ((ch < '0' || ch > '9') && (ch != '-')) ch = getchar();
    if (ch == '-') f = -1, ch = getchar();
    while (ch >= '0' && ch <= '9') val = (val << 3) + (val << 1) + ch - '0', ch = getchar();
    return val * f;
}
 
int dist[maxn];
bool vis[maxn];
#define pii pair<int, int>
priority_queue< pii, vector< pii >, greater< pii > > Qmin;
const int INF = 1000000007;
inline void Dijkstra(int s){
    for (int i = 0; i <= n; ++i){
        vis[i] = false;
        dist[i] = INF;
    }
    dist[s] = 0; Qmin.push( make_pair(0, s) );
    for (int i = 0; i <= n; ++i){
        while (!Qmin.empty() && vis[Qmin.top().second]) Qmin.pop();
        if (Qmin.empty()) break;
        int u = Qmin.top().second; Qmin.pop();
        vis[u] = true;
        for (int e = head[u]; e; e = nxt[e]){
            int v = vet[e], cost = val[e];
            if (dist[v] > dist[u] + cost){
                dist[v] = dist[u] + cost;
                Qmin.push( make_pair(dist[v], v) );
            }
        }
    }
}
 
int main(){
    n = read(); m = read(); c = read();
    for (int i = 1; i <= m; ++i){
        int u = read(), v = read(), w = read();
        addedge(u, v, w);
    }
     
    for (int i = 0; i <= n; ++i){
        for (int j = 0; j < 20; ++j){
            int to = i ^ (1 << j);
            if (to <= n) addedge(i, to, c * (1 << j));
        }
    }
     
    int A = read(), B = read();
    Dijkstra(A);
     
    printf("%d\n", dist[B]);
    return 0;
}

方法 2 的代码

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define pii pair<int,int>
using namespace std; const int maxn = 200007;
const int maxm = 3000007;
int n, m, C, lgn, A, B;
int edgenum, hea[maxn], vet[maxm], nxt[maxm], val[maxm];
inline void addedge(int u, int v, int cost){
++edgenum;
vet[edgenum] = v;
val[edgenum] = cost;
nxt[edgenum] = hea[u];
hea[u] = edgenum; //printf("%d -> %d (%d)\n", u, v, cost);
} inline int read(){
int f=1, val=0; char ch=getchar();
while ((ch<'0'||ch>'9')&&(ch!='-')) ch=getchar();
if (ch=='-') f=-1,ch=getchar();
while (ch>='0'&&ch<='9') val=(val<<3)+(val<<1)+ch-'0',ch=getchar();
return val*f;
} int dist[maxn];
bool vis[maxn];
priority_queue<pii, vector< pii >, greater< pii > > Qmin;
inline void Dijkstra(int s){
for (int i = 1; i <= n; ++i){
vis[i] = false;
dist[i] = 1000000000;
}
dist[s] = 0; Qmin.push(make_pair(0, s));
for (int i = 1; i <= n; ++i){
while (!Qmin.empty() && vis[Qmin.top().second]) Qmin.pop();
if (Qmin.empty()) break;
int u = Qmin.top().second; Qmin.pop();
vis[u] = true;
for (int e = hea[u]; e; e = nxt[e]){
int v = vet[e], cost = val[e];
if (dist[v] > dist[u] + cost) dist[v] = dist[u] + cost, Qmin.push(make_pair(dist[v], v));
}
}
} int main(){
n = read(); m = read(); C = read();
for (int i = 1; i <= m; ++i){
int u = read(), v = read(), cost = read();
addedge(u, v, cost);
}
lgn = floor(log2(n)) + 1;
n = (1 << lgn) - 1; for (int i = 1; i <= n; ++i){
for (int j = 0; j < lgn; ++j)
addedge(i, i ^ (1 << j), (1 << j) * C);
} A = read(); B = read();
Dijkstra(A); printf("%d\n", dist[B]);
return 0;
}

[Code+#4]最短路 解题报告的更多相关文章

  1. hdu 2544 最短路 解题报告

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544 题目意思:给出 n 个路口和 m 条路,每一条路需要 c 分钟走过.问从路口 1 到路口 n 需 ...

  2. 「2018-12-02模拟赛」T1 最短路 解题报告

    1.最短路(short.pas/cpp/in/out) 问题描述: 小 C 终于被小 X 感动了,于是决定与他看电影,然而小 X 距离电影院非常远,现在假设 每条道路需要花费小 X 的时间为 1,由于 ...

  3. 「ZJOI2016」解题报告

    「ZJOI2016」解题报告 我大浙的省选题真是超级神仙--这套已经算是比较可做的了. 「ZJOI2016」旅行者 神仙分治题. 对于一个矩形,每次我们从最长边切开,最短边不会超过 \(\sqrt{n ...

  4. ACM-ICPC 2017 Asia HongKong 解题报告

    ACM-ICPC 2017 Asia HongKong 解题报告 任意门:https://nanti.jisuanke.com/?kw=ACM-ICPC%202017%20Asia%20HongKon ...

  5. CH Round #56 - 国庆节欢乐赛解题报告

    最近CH上的比赛很多,在此会全部写出解题报告,与大家交流一下解题方法与技巧. T1 魔幻森林 描述 Cortana来到了一片魔幻森林,这片森林可以被视作一个N*M的矩阵,矩阵中的每个位置上都长着一棵树 ...

  6. 二模13day1解题报告

    二模13day1解题报告 T1.发射站(station) N个发射站,每个发射站有高度hi,发射信号强度vi,每个发射站的信号只会被左和右第一个比他高的收到.现在求收到信号最强的发射站. 我用了时间复 ...

  7. LeetCode 解题报告索引

    最近在准备找工作的算法题,刷刷LeetCode,以下是我的解题报告索引,每一题几乎都有详细的说明,供各位码农参考.根据我自己做的进度持续更新中......                        ...

  8. POJ 1001 解题报告 高精度大整数乘法模版

    题目是POJ1001 Exponentiation  虽然是小数的幂 最终还是转化为大整数的乘法 这道题要考虑的边界情况比较多 做这道题的时候,我分析了 网上的两个解题报告,发现都有错误,说明OJ对于 ...

  9. 2014 ACM/ICPC 鞍山赛区现场赛 D&amp;I 解题报告

    鞍山现场赛结束了呢-- 我们出的是D+E+I三道题-- 吾辈AC掉的是D和I两道,趁着还记得.先在这里写一写我写的两道水题D&I的解题报告吧^_^. D题的意思呢是说星云内有一堆排成一条直线的 ...

随机推荐

  1. sqlalchemy查询结果类型简析

    Sqlalchemy的查询方式有很多种,例如可以查询全部,可以查询符合条件的,可以查询指定字段的.那么这么多种查询,返回的结果是不是一样的呢?作本文记录分析结果. Sql_forengin.py #c ...

  2. vue-resource的使用,前后端数据交互

    vue-resource的使用,前后端数据交互 1:导入vue与vue-resource的js js下载:   https://pan.baidu.com/s/1fs5QaNwcl2AMEyp_kUg ...

  3. 第五节: EF高级属性(一) 之 本地缓存、立即加载、延迟加载(不含导航属性)

    一. 本地缓存 从这个章节开始,介绍一下EF的一些高级特性,这里介绍的首先介绍的EF的本地缓存,在前面的“EF增删改”章节中介绍过该特性(SaveChanges一次性会作用于本地缓存中所有的状态的变化 ...

  4. [物理学与PDEs]第3章习题7 快、慢及Alfv\'en 特征速度的比较

    证明: 当 $H_1\neq 0$ 及 $H_2^2+H_3^2\neq 0$ 时, 快.慢及 Alfv\'en 特征速度 $C_f$, $C_s$ 及 $C_a$ 满足 $$\bex 0<C_ ...

  5. CSS三种样式

    CSS 指层叠样式表 (Cascading Style Sheets): 1 内联样式:无法复用,在元素style内写 ,很少使用: 2 内部样式:在head元素内style属性内写,此样式可以被当前 ...

  6. rem是怎么计算的

    「rem」是指根元素(root element,html)的字体大小,从遥远的 IE6 到版本到 Chrome 他们都约好了,根元素默认的 font-size 都是 16px. rem是通过根元素进行 ...

  7. 创建一个MongoDB数据库再到配置成Window服务再设置用户名密码

    1.安装MongoDB数据在官网下载安装 然后在C盘找到C:\Program Files\MongoDB\Server\4.0\bin这个可执行目录 使用cmd进入到这: 2.在C盘根目录创建一个名为 ...

  8. 「luogu2680」[NOIp2015] 运输计划

    题目大意:给定一棵n个节点的树,输入m组一条链的两个端点:把树上的某个边权改为0,求m条链长度的最大值的最小值: 一.考虑二分: 1.对于需要判断是否为可行方案的 mid,所有链长不大于 mid 的链 ...

  9. 安装anaconda和python3.7环境

    安装anaconda和python3.7 安装matplotlib报错(参考https://github.com/conda/conda/issues/6007)# 设置源为清华conda confi ...

  10. linux下 vi命令编辑/etc/my.cnf

    把my.cnf配置文件加个max_connections包括(插入命令,删除命令,修改命令.退出保存命令) 你要有这个文件写权限,shell下输入: vi /etc/my.cnf 进入vi后,按i移动 ...