[Code+#4]最短路 解题报告
Orz THU众大佬,lct(注意不是link-cut-tree
,是一个大佬)
这道题很容易让人联想到 最短路,但是最短路需要先 建图;
暴力建出所有边的算法显然是不可行的,因为这样会建出 \(O(n^2 + m)\) 条边;
那么我们要考虑能不能 减少一些边 ,使边的数量可以接受。
从哪里入手减少边的数量呢?异或或许是一个不错的切入口。
举个栗子:
假设我们要从 \(001_2\) 到 \(010_2\),我们要花费 \(2^0 + 2^1\) 的费用;
但是,最短路有一个 优越的性质,我们可以把边拆开来,可以先从 \(001_2\) 到 \(000_2\),再从 \(000_2\) 到 \(010_2\),费用是一样的。
这样我们对于每个点 \(i\),只需要建 \(i\) 到 \(i \ XOR \ 2^k\) 的边,之后 Dijkstra 就可以了哈。
需要注意的是 边界情况:从 \(i\) 到 \(j\) 经过的中间点可能超过 \(n\),对此有 2 种处理方法:
- 建边和 Dijkstra 的范围调整为 \([0,n]\)
- 建边和 Dijkstra 的范围调整为 \([1, 2^k-1],k = min \{ k \ | \ n \leq 2^k -1 \}\)
方法 1 的代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
const int maxn = 100007;
const int maxm = 2500007;
int n, m, c;
int edgenum, head[maxn], nxt[maxm], vet[maxm], val[maxm];
inline void addedge(int u, int v, int w){
++edgenum;
vet[edgenum] = v;
val[edgenum] = w;
nxt[edgenum] = head[u];
head[u] = edgenum;
}
inline int read(){
int f = 1, val = 0; char ch = getchar();
while ((ch < '0' || ch > '9') && (ch != '-')) ch = getchar();
if (ch == '-') f = -1, ch = getchar();
while (ch >= '0' && ch <= '9') val = (val << 3) + (val << 1) + ch - '0', ch = getchar();
return val * f;
}
int dist[maxn];
bool vis[maxn];
#define pii pair<int, int>
priority_queue< pii, vector< pii >, greater< pii > > Qmin;
const int INF = 1000000007;
inline void Dijkstra(int s){
for (int i = 0; i <= n; ++i){
vis[i] = false;
dist[i] = INF;
}
dist[s] = 0; Qmin.push( make_pair(0, s) );
for (int i = 0; i <= n; ++i){
while (!Qmin.empty() && vis[Qmin.top().second]) Qmin.pop();
if (Qmin.empty()) break;
int u = Qmin.top().second; Qmin.pop();
vis[u] = true;
for (int e = head[u]; e; e = nxt[e]){
int v = vet[e], cost = val[e];
if (dist[v] > dist[u] + cost){
dist[v] = dist[u] + cost;
Qmin.push( make_pair(dist[v], v) );
}
}
}
}
int main(){
n = read(); m = read(); c = read();
for (int i = 1; i <= m; ++i){
int u = read(), v = read(), w = read();
addedge(u, v, w);
}
for (int i = 0; i <= n; ++i){
for (int j = 0; j < 20; ++j){
int to = i ^ (1 << j);
if (to <= n) addedge(i, to, c * (1 << j));
}
}
int A = read(), B = read();
Dijkstra(A);
printf("%d\n", dist[B]);
return 0;
}
方法 2 的代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define pii pair<int,int>
using namespace std;
const int maxn = 200007;
const int maxm = 3000007;
int n, m, C, lgn, A, B;
int edgenum, hea[maxn], vet[maxm], nxt[maxm], val[maxm];
inline void addedge(int u, int v, int cost){
++edgenum;
vet[edgenum] = v;
val[edgenum] = cost;
nxt[edgenum] = hea[u];
hea[u] = edgenum;
//printf("%d -> %d (%d)\n", u, v, cost);
}
inline int read(){
int f=1, val=0; char ch=getchar();
while ((ch<'0'||ch>'9')&&(ch!='-')) ch=getchar();
if (ch=='-') f=-1,ch=getchar();
while (ch>='0'&&ch<='9') val=(val<<3)+(val<<1)+ch-'0',ch=getchar();
return val*f;
}
int dist[maxn];
bool vis[maxn];
priority_queue<pii, vector< pii >, greater< pii > > Qmin;
inline void Dijkstra(int s){
for (int i = 1; i <= n; ++i){
vis[i] = false;
dist[i] = 1000000000;
}
dist[s] = 0; Qmin.push(make_pair(0, s));
for (int i = 1; i <= n; ++i){
while (!Qmin.empty() && vis[Qmin.top().second]) Qmin.pop();
if (Qmin.empty()) break;
int u = Qmin.top().second; Qmin.pop();
vis[u] = true;
for (int e = hea[u]; e; e = nxt[e]){
int v = vet[e], cost = val[e];
if (dist[v] > dist[u] + cost) dist[v] = dist[u] + cost, Qmin.push(make_pair(dist[v], v));
}
}
}
int main(){
n = read(); m = read(); C = read();
for (int i = 1; i <= m; ++i){
int u = read(), v = read(), cost = read();
addedge(u, v, cost);
}
lgn = floor(log2(n)) + 1;
n = (1 << lgn) - 1;
for (int i = 1; i <= n; ++i){
for (int j = 0; j < lgn; ++j)
addedge(i, i ^ (1 << j), (1 << j) * C);
}
A = read(); B = read();
Dijkstra(A);
printf("%d\n", dist[B]);
return 0;
}
[Code+#4]最短路 解题报告的更多相关文章
- hdu 2544 最短路 解题报告
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544 题目意思:给出 n 个路口和 m 条路,每一条路需要 c 分钟走过.问从路口 1 到路口 n 需 ...
- 「2018-12-02模拟赛」T1 最短路 解题报告
1.最短路(short.pas/cpp/in/out) 问题描述: 小 C 终于被小 X 感动了,于是决定与他看电影,然而小 X 距离电影院非常远,现在假设 每条道路需要花费小 X 的时间为 1,由于 ...
- 「ZJOI2016」解题报告
「ZJOI2016」解题报告 我大浙的省选题真是超级神仙--这套已经算是比较可做的了. 「ZJOI2016」旅行者 神仙分治题. 对于一个矩形,每次我们从最长边切开,最短边不会超过 \(\sqrt{n ...
- ACM-ICPC 2017 Asia HongKong 解题报告
ACM-ICPC 2017 Asia HongKong 解题报告 任意门:https://nanti.jisuanke.com/?kw=ACM-ICPC%202017%20Asia%20HongKon ...
- CH Round #56 - 国庆节欢乐赛解题报告
最近CH上的比赛很多,在此会全部写出解题报告,与大家交流一下解题方法与技巧. T1 魔幻森林 描述 Cortana来到了一片魔幻森林,这片森林可以被视作一个N*M的矩阵,矩阵中的每个位置上都长着一棵树 ...
- 二模13day1解题报告
二模13day1解题报告 T1.发射站(station) N个发射站,每个发射站有高度hi,发射信号强度vi,每个发射站的信号只会被左和右第一个比他高的收到.现在求收到信号最强的发射站. 我用了时间复 ...
- LeetCode 解题报告索引
最近在准备找工作的算法题,刷刷LeetCode,以下是我的解题报告索引,每一题几乎都有详细的说明,供各位码农参考.根据我自己做的进度持续更新中...... ...
- POJ 1001 解题报告 高精度大整数乘法模版
题目是POJ1001 Exponentiation 虽然是小数的幂 最终还是转化为大整数的乘法 这道题要考虑的边界情况比较多 做这道题的时候,我分析了 网上的两个解题报告,发现都有错误,说明OJ对于 ...
- 2014 ACM/ICPC 鞍山赛区现场赛 D&I 解题报告
鞍山现场赛结束了呢-- 我们出的是D+E+I三道题-- 吾辈AC掉的是D和I两道,趁着还记得.先在这里写一写我写的两道水题D&I的解题报告吧^_^. D题的意思呢是说星云内有一堆排成一条直线的 ...
随机推荐
- prometheus 标签使用
标签的配置使用 考虑到要明智地使用标签,我们需要给事物重新命名.在一个集中的.复杂的监视环境中,我们有时无法控制正在监视的所有资源以及它们公开的监视数据.重新标记允许在自己的环境中控制.管理和潜在地标 ...
- C++回顾day03---<模板>
一:函数模板 建立一个通用函数,其函数类型和形参类型不具体指定,用一个虚拟的类型来代表.这个通用函数就称为函数模板.凡是函数体相同的函数都可以用这个模板来代替,不必定义多个函数,只需要在模板中定义一次 ...
- DirectX11 With Windows SDK--01 DirectX11初始化
前言 由于个人觉得龙书里面第4章提供的Direct3D 初始化项目封装得比较好,而且DirectX SDK Samples里面的初始化程序过于精简,不适合后续使用,故选择了以Init Direct3D ...
- pymysql常见问题
1.Python中pymysql出现乱码的解决方法 一般来说,在使用mysql最麻烦的问题在于乱码. 查看mysql的编码: show variables like 'character_set_%' ...
- 目标检测网络之 YOLOv3
本文逐步介绍YOLO v1~v3的设计历程. YOLOv1基本思想 YOLO将输入图像分成SxS个格子,若某个物体 Ground truth 的中心位置的坐标落入到某个格子,那么这个格子就负责检测出这 ...
- 查看oracle当前的连接数
SQL> select count(*) from v$session #当前的连接数SQL> Select count(*) from v$session where status='A ...
- Ubuntu18.04更换官方默认更新源sources.list
⒈备份官方默认更新源文件 cp /etc/apt/sources.list /etc/apt/sources.list.bak 备份官方更新源文件 ⒉编辑 1.打开 vi /etc/apt/sourc ...
- Basic Calculator I && II && III
Basic Calculator I Implement a basic calculator to evaluate a simple expression string. The expressi ...
- [HAOI2015]树上操作-树链剖分
#include<bits/stdc++.h> using namespace std; const int maxn = 1e6+5; #define mid ((l+r)>> ...
- javac编译后运行提示找不到或无法加载主类
第一种常见错误: package demo_01; public class hello { public static void main(String[] args) { System.out.p ...