[Code+#4]最短路 解题报告
Orz THU众大佬,lct(注意不是link-cut-tree
,是一个大佬)
这道题很容易让人联想到 最短路,但是最短路需要先 建图;
暴力建出所有边的算法显然是不可行的,因为这样会建出 \(O(n^2 + m)\) 条边;
那么我们要考虑能不能 减少一些边 ,使边的数量可以接受。
从哪里入手减少边的数量呢?异或或许是一个不错的切入口。
举个栗子:
假设我们要从 \(001_2\) 到 \(010_2\),我们要花费 \(2^0 + 2^1\) 的费用;
但是,最短路有一个 优越的性质,我们可以把边拆开来,可以先从 \(001_2\) 到 \(000_2\),再从 \(000_2\) 到 \(010_2\),费用是一样的。
这样我们对于每个点 \(i\),只需要建 \(i\) 到 \(i \ XOR \ 2^k\) 的边,之后 Dijkstra 就可以了哈。
需要注意的是 边界情况:从 \(i\) 到 \(j\) 经过的中间点可能超过 \(n\),对此有 2 种处理方法:
- 建边和 Dijkstra 的范围调整为 \([0,n]\)
- 建边和 Dijkstra 的范围调整为 \([1, 2^k-1],k = min \{ k \ | \ n \leq 2^k -1 \}\)
方法 1 的代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
const int maxn = 100007;
const int maxm = 2500007;
int n, m, c;
int edgenum, head[maxn], nxt[maxm], vet[maxm], val[maxm];
inline void addedge(int u, int v, int w){
++edgenum;
vet[edgenum] = v;
val[edgenum] = w;
nxt[edgenum] = head[u];
head[u] = edgenum;
}
inline int read(){
int f = 1, val = 0; char ch = getchar();
while ((ch < '0' || ch > '9') && (ch != '-')) ch = getchar();
if (ch == '-') f = -1, ch = getchar();
while (ch >= '0' && ch <= '9') val = (val << 3) + (val << 1) + ch - '0', ch = getchar();
return val * f;
}
int dist[maxn];
bool vis[maxn];
#define pii pair<int, int>
priority_queue< pii, vector< pii >, greater< pii > > Qmin;
const int INF = 1000000007;
inline void Dijkstra(int s){
for (int i = 0; i <= n; ++i){
vis[i] = false;
dist[i] = INF;
}
dist[s] = 0; Qmin.push( make_pair(0, s) );
for (int i = 0; i <= n; ++i){
while (!Qmin.empty() && vis[Qmin.top().second]) Qmin.pop();
if (Qmin.empty()) break;
int u = Qmin.top().second; Qmin.pop();
vis[u] = true;
for (int e = head[u]; e; e = nxt[e]){
int v = vet[e], cost = val[e];
if (dist[v] > dist[u] + cost){
dist[v] = dist[u] + cost;
Qmin.push( make_pair(dist[v], v) );
}
}
}
}
int main(){
n = read(); m = read(); c = read();
for (int i = 1; i <= m; ++i){
int u = read(), v = read(), w = read();
addedge(u, v, w);
}
for (int i = 0; i <= n; ++i){
for (int j = 0; j < 20; ++j){
int to = i ^ (1 << j);
if (to <= n) addedge(i, to, c * (1 << j));
}
}
int A = read(), B = read();
Dijkstra(A);
printf("%d\n", dist[B]);
return 0;
}
方法 2 的代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define pii pair<int,int>
using namespace std;
const int maxn = 200007;
const int maxm = 3000007;
int n, m, C, lgn, A, B;
int edgenum, hea[maxn], vet[maxm], nxt[maxm], val[maxm];
inline void addedge(int u, int v, int cost){
++edgenum;
vet[edgenum] = v;
val[edgenum] = cost;
nxt[edgenum] = hea[u];
hea[u] = edgenum;
//printf("%d -> %d (%d)\n", u, v, cost);
}
inline int read(){
int f=1, val=0; char ch=getchar();
while ((ch<'0'||ch>'9')&&(ch!='-')) ch=getchar();
if (ch=='-') f=-1,ch=getchar();
while (ch>='0'&&ch<='9') val=(val<<3)+(val<<1)+ch-'0',ch=getchar();
return val*f;
}
int dist[maxn];
bool vis[maxn];
priority_queue<pii, vector< pii >, greater< pii > > Qmin;
inline void Dijkstra(int s){
for (int i = 1; i <= n; ++i){
vis[i] = false;
dist[i] = 1000000000;
}
dist[s] = 0; Qmin.push(make_pair(0, s));
for (int i = 1; i <= n; ++i){
while (!Qmin.empty() && vis[Qmin.top().second]) Qmin.pop();
if (Qmin.empty()) break;
int u = Qmin.top().second; Qmin.pop();
vis[u] = true;
for (int e = hea[u]; e; e = nxt[e]){
int v = vet[e], cost = val[e];
if (dist[v] > dist[u] + cost) dist[v] = dist[u] + cost, Qmin.push(make_pair(dist[v], v));
}
}
}
int main(){
n = read(); m = read(); C = read();
for (int i = 1; i <= m; ++i){
int u = read(), v = read(), cost = read();
addedge(u, v, cost);
}
lgn = floor(log2(n)) + 1;
n = (1 << lgn) - 1;
for (int i = 1; i <= n; ++i){
for (int j = 0; j < lgn; ++j)
addedge(i, i ^ (1 << j), (1 << j) * C);
}
A = read(); B = read();
Dijkstra(A);
printf("%d\n", dist[B]);
return 0;
}
[Code+#4]最短路 解题报告的更多相关文章
- hdu 2544 最短路 解题报告
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544 题目意思:给出 n 个路口和 m 条路,每一条路需要 c 分钟走过.问从路口 1 到路口 n 需 ...
- 「2018-12-02模拟赛」T1 最短路 解题报告
1.最短路(short.pas/cpp/in/out) 问题描述: 小 C 终于被小 X 感动了,于是决定与他看电影,然而小 X 距离电影院非常远,现在假设 每条道路需要花费小 X 的时间为 1,由于 ...
- 「ZJOI2016」解题报告
「ZJOI2016」解题报告 我大浙的省选题真是超级神仙--这套已经算是比较可做的了. 「ZJOI2016」旅行者 神仙分治题. 对于一个矩形,每次我们从最长边切开,最短边不会超过 \(\sqrt{n ...
- ACM-ICPC 2017 Asia HongKong 解题报告
ACM-ICPC 2017 Asia HongKong 解题报告 任意门:https://nanti.jisuanke.com/?kw=ACM-ICPC%202017%20Asia%20HongKon ...
- CH Round #56 - 国庆节欢乐赛解题报告
最近CH上的比赛很多,在此会全部写出解题报告,与大家交流一下解题方法与技巧. T1 魔幻森林 描述 Cortana来到了一片魔幻森林,这片森林可以被视作一个N*M的矩阵,矩阵中的每个位置上都长着一棵树 ...
- 二模13day1解题报告
二模13day1解题报告 T1.发射站(station) N个发射站,每个发射站有高度hi,发射信号强度vi,每个发射站的信号只会被左和右第一个比他高的收到.现在求收到信号最强的发射站. 我用了时间复 ...
- LeetCode 解题报告索引
最近在准备找工作的算法题,刷刷LeetCode,以下是我的解题报告索引,每一题几乎都有详细的说明,供各位码农参考.根据我自己做的进度持续更新中...... ...
- POJ 1001 解题报告 高精度大整数乘法模版
题目是POJ1001 Exponentiation 虽然是小数的幂 最终还是转化为大整数的乘法 这道题要考虑的边界情况比较多 做这道题的时候,我分析了 网上的两个解题报告,发现都有错误,说明OJ对于 ...
- 2014 ACM/ICPC 鞍山赛区现场赛 D&I 解题报告
鞍山现场赛结束了呢-- 我们出的是D+E+I三道题-- 吾辈AC掉的是D和I两道,趁着还记得.先在这里写一写我写的两道水题D&I的解题报告吧^_^. D题的意思呢是说星云内有一堆排成一条直线的 ...
随机推荐
- Luogu_1944 最长括号匹配
题目链接 动态规划的方式: 1. 上一个括号或者上一段合法序列的前一个括号和当前位置形成 (A),[A] 型合法序列: 2. 该位置所在的当前合法序列和之前的某一段与其相邻的序列组成 AB 型合法序列 ...
- SQL随记(三)
1.关于package: 包的作用:可以将任何出现在块声明的语句(过程,函数,游标,游标,类型,变量)放入包中,相当于一个容器. 包的好处:在包中的(过程,函数,游标,游标,类型,变量)相当于sql/ ...
- CMDB服务器管理系统【s5day90】:API构造可插拔式插件逻辑
1.服务器端目录结构: 1.__init__.py from django.conf import settings from repository import models import impo ...
- openJDK之如何下载各个版本的openJDK源码
如果我们需要阅读openJDK的源码,那么需要下载,那么该去哪下载呢? 现在JDK已经发展到版本10了,11已经处于计划中,如果需要特定版本的openJDK,它们的下载链接在哪呢? 1.openJDK ...
- 关于微信登录授权获取unionid的方法
前言:微信登录授权是目前普遍存在于小程序的,还有一种静默授权方式是微信提供的但是不推荐使用,由于不同设备登录openid是不同的那么我们应该怎样拿到一个唯一的ID呢,下面做分享 wxml代码 < ...
- table 表格固定表头和第一列、内容可滚动
整理了下: <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" c ...
- [物理学与PDEs]第1章第6节 电磁场的标势与矢势 6.3 例 --- 电偶极辐射
1. 偶极子: 相距为 $l$, 带电量分别为 $\pm q$ 的一对电荷组成的系统. 称 $$\bex {\bf m}=q{\bf l} \eex$$ 为电偶极矩, 其中 ${\bf l}$ 为 $ ...
- 使用 MERGE 语句实现增删改
Ø 简介 在平常编写增删改的 SQL 语句时,我们用的最多的就是 INSERT.UPDATE 和 DELETE 语句,这是最基本的增删改语句.其实,SQL Server 中还有另外一个可以实现增删改 ...
- 爬虫-通过本地IP地址从中国天气网爬取当前城市天气情况
1.问题描述 最近在做一个pyqt登录校园网的小项目,想在窗口的状态栏加上当天的天气情况,用爬虫可以很好的解决我的问题. 2.解决思路 考虑到所处位置的不同,需要先获取本地城市地址,然后作为中 ...
- 万维网WWW详解
万维网WWW(World Wide Web)并非某种特殊的计算机网络,万维网是一个个大规模的.联机式的信息储藏所,英文简称Web. 万维网使用链接的方式能非常方便地从英特网上的一个站点访问到一个站点, ...