Phone List

Time Limit: 1 Sec     Memory Limit: 128 Mb     Submitted: 140     Solved: 35


Description

  Given a list of phone numbers, determine if it is consistent in the sense that no number is the prefix of another. Let’s say the phone catalogue listed these numbers:

  • Emergency 911
  • Alice 97 625 999
  • Bob 91 12 54 26

  In this case, it’s not possible to call Bob, because the central would direct your call to the emergency line as soon as you had dialled the first three digits of Bob’s phone number. So this list would not be consistent.

Input

The first line of input gives a single integer, 1<=t<=40, the number of test cases. Each test case starts with n, the number of phone numbers, on a separate line, 1<=n<=10000. Then follows n lines with one unique phone number on each line. A phone number is a sequence of at most ten digits.

Output

For each test case, output “YES” if the list is consistent, or “NO” otherwise.

Sample Input

2
3
911
97625999
91125426
5
113
12340
123440
12345
98346

Sample Output

NO
YES 题意:查询n个字符串,是否存在一个字符串是其他字符串的前缀。 秒想到字典树,撸模版AC了,然后和队友交流,学长说我写的太复杂了,直接用set写就行了。我后面试这写了一下,但是一直超时,各种优化实在出不来,问了下学长,了解了新操作,涨知识了了。

第一个是set写的,下面这个是字典树写的,set这个很卡时间,数据再强一点也许就卡了。
 
然后再HDU上提交,HDU把内存卡30M了,所以普通的字典树内存可能不够,就改进写成了树状数组(静态字典树),内存就被压缩到了6.7M,也能过了;
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAh8AAABfCAIAAADH+DLDAAAgAElEQVR4nO29a3Mc15UtWDF/qiIqKrrnL/jDfLhm8U2p53sLkghKNxwkYFvutmbiSiTtjntnTBCyr2WREG05jB5LIEBBIkiRtrvdDVZVZr1Btu2hSKHyUZDtDt0PK/eqlZmFQoF4sFJARgUCKGSePGfvdfbr7LNPLgzDMAyDIPA8L7ArDEPf9/G97/u9Xo8/wzDsdrt8pNvtep7X6/X0kSAIcA//9DwPLaDB9fV1/Bcv9X3f8zz8HtrleR7epT3hW9B+r9fDq/kudBKv0+H0er3HT576vo/H0Th+we/8JQzDjY0Nz/M2NjbYCNvkELTbeBAt4/Fer9e1a2Njgz3sdrtosNfrbWxsoBF8if+muYBf8HaMGq9DT0BqdkCpzV9IW44Cf3K8eBakVu6DtniEHOc37OfjJ0/5dv48OLjy7coQrh4/eTr+uNIpkMYVhpBpXD1+8jTruEpzQXGVIyyUkRgeQUk+gWr8Be/TTpAivC0NjsR/fd/H8Pgi/NLr9dAr/MlGtAOcDGgHrGX7IBY5ASHIaUb+kRx44xdffME3BiIclWFsU/8kDtAgnl1fX8c9CnGQTh8nefH7+vp6eqR8lqDhEAg4BaXONB2L0p9DU+4oJTlVOEyAmFLJ930gjPNNJcVBwBXxkyFcYS6MOa4Ip4G4grGYaVzR3s0urjCEzeRVDsRK6GSyU3vZ7XYxHryAlOVQldxEA9uhoMEAEhRng4o5HQYBwYvThi1TmSfAjZ+cUSr1aDUojIIgwOv4dlCJ35ANuEhxnaXACgauk5PsT5CLvQrMbGTPdaoTRoQarvX1ddpBmKi+mJl+3LrkN8qLBA3DMEQ7tD05lsBMGLyRhOWI8POA4IqYyRCuKNfGGVcY/ma4whAyjStMnEzjCpblZvIqBx2FP5QfpBdhpBc5odThgKmEFYiETvCcokDkpb9n3np6RMSHTo/QPGUaFJzJwSDLS8eoQwjMZiG/grg0YQ8VLrh0JoRmlCk+SNIwDNExut7EH7r9+MlTspVdPTi4UhpmBVf048cZV6HJ6IG4AuoyjavHT55mHVcM7g2UVzlf1C9+4pXgHIcdiH0BiiM8B+apMiTISE1FdmKEyqFAdCP/VKLo2HxzSNkajYXQbBN+iS5Bzfom7wLzlBO4J3FVh3M4iam4vr5Oj17vYa+0TfzOuYRXJOZSAv2hxWoVW2xccUYiKOx8sRm1h5jYX375JSDC4fO/OgqlPKeN3qBOoQqUA4IrFb5ZwRWEwpjjin0eiCtM50zjSle/MoorjVuk5VWO5E6wU4fHx5TEHFIomlmRx4FpX8lR9cQDia4SxOy0nwrXcsz6Fg0U8hdCxDMnLgGdhEsbiO7VxxOk0O8TpCdllQ0KCB01Ca6TlkQAGjB2WHkkApHK1hAuwOOIZngSbQjFAuK4aPr5Jk3UelL44gLE0RNyZ2NjA6JKJxKvg4Ar0idDuILhP+a4gpzaDFcaVsoorrhgmV1cUccPlFc53kcnjoAgdPgwoaDc0s4pdBSIgfi/JD3eRT7RJccj0Ni4yIBQTCpFIScJo4cEBGcChCBBwMGyD4qJxATgn6FFOTE6GESMzOLPxFxSOJLZnCTkKIlGftMr14tDS8Cr1+ux/6AJCQ6iJVZBdLpqy6QMRQPbDyR2oaSj2tahHRxceWZ4ZghXFM3jjCsSaiCuEFbKNK6g4zONK0bGBsqrnPI7MC2EwSeUdiB+qCc2Ed8NK48uKilCjurNZBLZzO8ZZOyJ556ABXHPvinjyU5izjd7TWdRmpp+6vLkoo1Gnq2vr+vo1M4FEUheokTBQWagEYQUQnOQ2bK+haglPnStVV/KSZUGCklHUiiheDP7oJ1XwODC+qo+ggzOA4KrhIDIBK5gEIw5rvDUZrhSqzmjuIKCzDSuYKZsJq9yz/aOwFQ6X6mt+6bKQvHyQskWD0RX0wRQHPM2EpQzhG8hfPkKkptDUGYzyUT7AGzRoUObhAvRpvMHN5PQxCV7S6xQtvIb/qkA3SPs7ptMZN7IzrGbRVzx/gzhipGxccbVcJkI0ZxpXCUykrOIKy5m83vFVY5d9MXS5JC8+OKVAoVv5f2eOKq+xP7AEl1NAlyUiGkfTckdyIqWJ9YWXqEpg4lXawtUs3oD+0xRqN3mS3EDnWXf/FZFVWDetNKKqp5gVVp5lmGi81Bpjpd2LWEDr8A3Ou3xFn0vGwniwtGzBBs+SGKSYrAQdb6xTeJEQ/CaLqFkPyC48m2xIUO4evzk6fjjinQYiCtM50zjShOuMoorul8D5VVOyU3e93YjSMcGQ7FreCfpHsq6Hy6OwTcdiG4owzzbTKQTQJ1i/Z6E4H9JEfaHbQZmp2hrNILYSdJKgavESQCLswj/6qVCwNolvjoTiwpqgnHsBwdXOuSs4IpbEccZV8rxNK6YrZRdXCU2umcRV+pBBil5FWUke3YlXhZm37ImAxJO3DhY1ok+aJ9xsSqDTOD61VPFfKGYn1r0pLKFdoyUDMXVZfJPelAcOKe3L6ujSljFBqmR2O9C0h0QXKnkygqudO8X5UIoBvI44EpDOmlcQa5lGldcsMwurpjaPlBe5UIropCABfsaWiYGKaukJ274PtgvHDOVNjW5hj7ThgB5EFoBHAVuuINNIeRlGt+kuLf7yftOpAxin+mb9ghh4UtwlmOhX/zll18aB2umXW7qzFQEJHrI7iGEzenKl/JnzwxMmp/gWtf24vbEeiK1dX3Vixu2BwFX0e/u7IlCMV8oTi0+/00hW+KKc0Fw1V/Z3gauFqcB6fMf7T6uOIqBuEp4zFnEFfe7DMPVOG02SuMKXNhMXuXIHs/2VAeiMAkOkrVrdRqWpuMSc2qRKOn1eoHBLvqcmnVFn4fxjENeBF8gdgFBA373ZN2JMycQHU5oehaWgU6GiU0MkTHoNhonHLlo5qX84oQJRijzYn+CIOhrl1OzbhiGoTsTKZvpj7/8MjSjhu+iOA7FpiAUwjD0vMqVk8V8oZifXtT3sj+8OHwlqWeJN0rJQOwy5ZGCTAeFL32JgPuWL6SofTZc8U7VTD0J7CiXdQ4kcLU4nVbqxROzzq7jCgP3KlehXc4veGHoRkyfvrVnuAp01CpAvxwBV7pU5kmkhTKCryjPnE6TkcTsa5eF3ccVQTIQV9yrPyKuKK9OzFT4iDt7JhrO9OKIuNJrh/JKU/k3xdV+y6vt4YpAGiivcol2lQqJB4RSSxcilnyM3ttMnr4pKNnY2AgCZ8ZkqxPPI9KXBvE53LOALPGkoPctWMGCa4RCEE9fIbLxDZw4mhJsVjmhlFJkcHokjHH+1D4EYrN4XiUSNCevOmhz6dt5M3J933TPhQUHQD81i9vCuHq+sEiDxWVkzOHcKEwvCr84ZM7GUExCpSRJsbGDqkSJolXK023iKrqHEfP0g5y0CfalcUVMLqBLRk8omF3EVUQQ0y4XFv0+W82/3ANcxaIiQTz1iw8m5AhpyM0ivhjCyjX9GfXfCAgo7gOuaCMPxJUa/qPg6uaUzaaTV53oS5NOhWJ+emlEXLEPO5dXyoVNcbXf8mp7uFIFiUtxlWNbvVEX2frGuGOd68vQU7Pl2CKb+6OT0fe1573IRkKgkV5qkU09RP2enQz64x19kc1R7eL7/WDCiVmn2zVHRJy8qu9HBuOp2arvB4GDe07MOr7v93o1PnLiqhMEQTRtTl51nlNSQGIjURC3+kfGVZLI/JOSS3C19eIttctixMrFC3E3OgzD6lU1zE9fdYmrZDzzwqLfB/nUIsYYveL0j50gCByLjC3VkjydvrUHuArILw6Zgqa71Q5WJpGjHX+UnYYL1C6CK9OpU4thGC6dN2B/dCEa+9RSjwDOF05fqfRx1fcbCsV84cxVZ3tJAVqDZBRciS975krFC4KAwUzYAcRVAhUzVeAqws+JWWfBFBUMRFNRZ4Cf0eUV90gMlFfjmWySwBWGoI6R4irHSBlaUeeOjNSm/aqxZGpRSWN29OmZal/Jr6+XZ0221p53gVUQYmO/C/eW1XsLw5C+y4VFv79EP71E+nvezSmbxtEoIoV0Zqbqd7uVGYu6RF2S/7KTYdyv70nYnX3We/gvT4wvJQh1DOFI1nCJmPDl9N4GrmxisBvhzgr3mq3KJa6b581KRW9xwwkELCMaTn/U7VIPnZipoAM3p4rnF7q9Xs0ov4RuRMGWU+9UfX+j9mP6Lhq93DNcDSvcu2Gl5pX+niwaJ8pDcUIRCYHEdiLy9n0XwVXtHfHYTH/jnr7zfXqm6kcS2UzSiPhXHZkR0zfjuEoIsgSuGI8dEVd938X0fSx2Or0IXIGnJ2YqGxsbNoTpBc/T0Z1f8CTyf/pH5fWbNjp3O/KKwb2B8oqs3F95tT1cMWeMr1Bc5fy4E4TBsE/q9OGG7gJNb9eXi1GaC4sBOd0P45x6x7FXsimOlutmelGK+aY52SvOhG2VpkgUJlKakoieBPf5alzkayDmiYrjTQxGM9zijgj+7NvI04uk8/pHUwZi2424oNHtctTC1GI0tGp/PVn7o5YOwYeL1OOgQnFNAlmdI1/4IMEQWtycJXZCC5pT9G8DV1ZsSmlL0cADJAxXoTJrIK4SvotZymeuOoHv+yYWz1x18Cw1uu9XZ08WivlCcfpWAld1Uh7vUplCQ/jCorjy00t7hqthJU98WZbv40qO7mCFq8CO7kCCEKcGiU+2Kgj7uKpcPWlfet5NyN+T79Q9z/MkVBgEgcmH6Zv9DIgzV10MP3rw/EIMV5RWA3EF1I2OqwgPp06fiCLJixcKxfzJqQs2Af1+x07P1oCrRbHzbk31Qw7dvqu6qOiaXtqOvNIhpOWVSvl9lFfbw9XjJ0+HHAmT68kG1I1Ryoia0j45W/MlH4PuJMBknXBmzXKvSFYfEawyy48veYW7XZ6WajY2nCAg20LT3pqWF8jFp3QeevEyoqHEkXxfwimxUMmSScy+diExQwlwY7zq7vTV1fRS1EMD+vmP9qk8LWe+znOdHgT9NnAlEkFxxc74vuKqb4h5m+BqYSpF9lOzVeIqkXVinxNXHd+PZEr/y1kHi4gaGfMYbDn1TsXzaMVPLYZy5809w5WXaIFEY1qgElBFki/l68PRM5EEln1ciU5Vn8/v6+/I3KR2Wez74snPydma4koX7dO4wobQ0XFljubszFQxXyhemJrOF4onZpfoj3qeNwQV/cjYTMX3fQmE9oK+9JteNKKNIq8wBOWgYoC+yP7Kq+3hintaiTHFVY6qj1HOXjzlg2iLSGOWXT4yCqNu0TaE2jcjwtH1GOKAkiKxkqZCjfPB36WQDl1potAb6nqz/RFdb52ivX5IJ5bXkArpJH0X3/eJ46kls2sk9qUKKUrrjIzKM0gb0DyTrtWNSKgK9pBrhmR6GDe7SG1807X8SxXu9F08CQhsG1eSCaO46sVDOr246+1vHtLp+y4S4j9x1cHwCVeGE2O4Isj7oR5fdQYaocCqijA9v+CJ73Jrz3DV73YwKFSYILi2BneTIOF/qbk1XZjU7orv0seVq37zolr3qniE4NMLnqd+5BBcUUAPxBVX+0bE1SKZJUGt2Vpt1jgVhqEjqEjhqj86IESMib52WdqOvOKe1oHyip3fX3m1PVzpJkL1w/AzR9nBdv24jmUPfIu7RXw6ebVqXVQtUjVjs9eTBb3pJdJIaU1w4xFqTg6esEM+HBkQSNo1lRDbCeIh+MACOP5zqGlfmRHKkO72FmdWFlE4tAjlJ69qEvPJd+q+OkORnWThYAnxBzuzUHqywOuZF6xCStHSs615fMq3pK/t4iq0M5qUKZyffgxXyUyQNK40MqYe5IVF3/d9LkdPfzwcV7dsLdfVbL3YK07NVn1/vTxDD7KfKmnr/3uAq9iCZQpXW1i+YJm/LcvXhDIDhr1eL3QjNYx1F67qB0GgsSPf98tXIvl7Uw3/xWG4Im4H4ipx8vGWuOLCTzWW3+HOSAwz0bE4rvqr+n4/hhZ5ZtQuH21HXmmsPi2vyKD9lVfbw1WiAArnI3DVP9+F1GQrm2cH3qREQw80I5lAUURigVoBtCtZpxwzSUC1D0Kzha5tv/J2knX6LNmBLhdayqnsQA3Q+4kltVRGsmG0NijUthjIFdrF/qs1RwLqT52ffETnPO9JZ51qzru3q1mnHI7CI9HzzXCVzJLvJwhFKOUNH0W4WrwAYbE4DXr6vs/Fg6mlXhiGCZyrdtFlhh7TySwRfw9wNSzrlPYjp7ovhlcoAQ1fZB/7gF8Yl44uAyS2i0Zs7Y866MeOrjpBENC6RxZAJdo3gxVyXz1LEP+83cluDM9mThSl3RJXyhH8fmLW7YcWppfQDju2JLsvLiz6Gxsf03cJw1B9lzAMa++cUbCNKK/0TJC0vOKd+yuvtocrVZBhPAUgRAV+NVvCkTd83kzEtSXtMr6RLVpH5SAV0MHIYdZgx+F72mtKxN5W4Xv1JfWGcDeWhbSHgayfh2OwkdiPqxZ2NUyFWfUYXX/L8P1+LQstifKIuNZX2JHsSG0VPD1b64XJ4HsUcvR0HVE/yBQycYOlaTo90P3jhivWT9wGrvoZyYIr813OL3hi3bubR8a+zS1x8cTfIoLqiiuGuQbiivtdtievTl6txHCVXPgM+/GxPiquuiEjYydna57n0ctJ6M6l7cgrza1IyysqhmCM5RW37AyUVzlyDv/uysYIjpDalY+pglJ2krtqLOs46btxeYAg6G5vy3qfjmpkdTffsk5XGs/u89Zib9CWdU98ySDu6ur3iidcxFaCIGwf3NT7FUYkrAIuwWL+GZiOUc1Em4CRMfZZxf1BwJUyKCu4ors5zrgKRL2lccXN0dnFleZWjD2u+k6e4iqxmzIhr3LBlqt5+75K7A1dzXvmVWKu6nvPtEqsWNS3cPh8hPDVe/gvT/xfnQD6PSeSko53koVkB4HuS2Y9YR2KAbWLhz1waEh94SgUzQcBV6RthnBFd3OccdVLrRIrrphwlV1cJfZIDMHVksTr9gVX5qNPLRp++gmTiquBFROIq1xCEPSeq+elMOoNXZYkA0ZflqQfum/L3b2hy5K+HTG0zwnEux6B1JAjO3NwcMX2M4QrFu8ZZ1z5opPSuGLt1OziSpfEh+PKliG+vbhPuOKW7Y8NV0x/WFRcUbsk+gDK93dTkgeZsFyC7VvEFILheFgu5LdOY76LgA7G8lg9tYgTR+xl2iJ+BlyxGxnCFSvBjDOuVPalccXgXnZxlairOwRXS/GtwQlcpWvqhGHYLxgxtSg3TC8IrgZUej15tdxNbdGbvtXPTppekgWz6X82J3igvMoFcTOhF08dUTR4lmzgi1bXm5UrVJvEHKHGZ/kN/0uqkT2cqJyWnl2B+YA9SQ/nrFCAYthqr6F7icMH8cu3Dq9B11dffYVZ0ZUduZwkZL0aUwcEV7xhOK44TBVhfCP7wKbQw4Ro88XJCO1sFQpBEhaNJIipLNAoMRvXgSRYTElNfiVUiA6E0pw3MHrDUcN+17ekcaXASONKt69lFFeJM9yG4Mq0y9TNFDcXrKBREDCvb3rB8zQL/8RMpb9wcmEBj2vans8a0qdm3TDsl6WwYhN6ksiJWbefc3/+Q2UBIQomRusu4fYzhQgjRWQCWOG+ZwoN8dO5pXy4n/6tb33rfz+84te//W7lq6++6m6SgUbvuLsbGWiZw5W3l/EfvU2fooDT0emXiceVgKEc+EbS0TNIyDiV0cpW73lnNjLtLbu4whBGwVUiFb6PqygjPCrAisRuJNDrTm28dFH0B1PJkT7uxTdvyYatm0bY2L7v/v0nrlQEV734kU657jY31HStbo+SG5hQWPhycQqFYgWEmxtWQVwBksEKi2D7hlViSzlvSBhW0C5fHV5yQbsABumNWqyT6ovBeHBwFeyjwR6O7AjquJQgtLTYNwr3nW9YDi3i3937DYCJPbxZxBWP19wSV6pdYrjarHTNTEUOGVpCmyyLV/H6NW+mlqLBxgtxUpcsGXm5ErOIV0e7U09ccQVXSslut5tT51ppHca9crJcJ1ICsmwkoYQ5ATjNyDBfFiTJIXUMdbIpI/XtxDT7wDcSar6Z2JwknhS/0wlwqF3SF7QL0c/5o/Nc/wVJekBwRedmOK58ibro49qyUph9S2gpFTpcH/ZFCuNxmN7aW11p0I3u/IkW6HuFKUs/MIOayo9v7Eo9kkCcCdyPNhn/Se+VHoirhPhO4IqiObu4otO/Ja5Y8HshjistXZPClaNFPfz45l/b+3UalZBC8WwqnrexUWexCcOVxdkuLGBc9F3K8RrEyq8cHRn6tiQNGRyISaUzjUxl9MP3Y6YNS96S9yA0ZmxCbwcSf1BYk5QwsuhCBrJkR/DxZup/jpabe4ly9azZyKF2SV/ULjqBOaO4o4rIUQf5a48rfj8cV75IW8oj3kO5xttUuySIqaIZz/rxS4WsWsEkl55Gwfv5RlCSBPcl3JTgFB7ncr0G04IgQN1ltq8ie2NjQ49OGIgrDG0zXOnhKBnFVeLYvSG4Ys7YzQSunP4e3hSuuA6/iEHFtEu8kkKv17vZr5Tj9yt4TS1aR/r7XXB/wnehhlZc5ZT0RGog6SKhrFmpBaRZGaSdAjEwDzQxH0IxB3Qu0edVxhNzyjxCiv1R11IxGoorShN7symHVxxql/TFyBgu2p6c5zpFNdHzIOBqS1GemHL7IMo3NjaQ+aqikGNEzpgncTxusyCn2L7SqmebJFTzkXq8n3TQS8dOBgWy6J3GVWjXQFxhCJnGlabDDMfVgmQkJ3C1FK+pw9I1/ZMbE0VuotPz+pUhUbzg429Hf8IXYVm2coSr/im6oJKuu3BoYTw+HFWxRGLc+vp6u912HKeyv5fjOO12u9vtbjzryWD4uTH0pB260gqLMHXSzqF2SV8J7aJhEN+OlCbLOJ2IK52u/K8Kbj4bbHUyWPux991bT45f/9M3fvKHr8fn+PU/fefWk/r/35dBw09wCiU4pnoo4Q+peGJsjWziVkSVoRRtviy0UHTq0dHami8GuwKAjbBZDalFfsZiv+5yGlf0MAbiSoN7I+HKjk2KTgaL40o1AZ/1RjzJUE7t3Ja8YqXqgfLKF7W9lE4dNsXQ65/cmChdQ//jJnr+4QXVLkEYuoPKGr3jRiOVcyimFxNxtpDrNCeuVDffyJkj7dbX1x3H+fzzz//85z/vs/D685///PnnnzuOo/ggdJTiynvCSAPT4AeMQbiKtMsIRwJFmyJ0DrVL+oJ2IZEReqaJygQkL15qMEFn/qnSh2Sn6ExoI53Sj77onZz707VV/0/+X583SXbt+pP/12ur/sm5P6193heRoZ3oHMgqBbUFbfaEiAxlgYHtMHEgjPvxVD+06jjddALi2tj4mBWClZuehXp0hlLs0iPxZVWcOgnjsgpdp2eqSVzR0h+IK62dOgKu+qcysxFWSjz5Tp2j6G8NscXwAZtCjA54kcj3M3ZM8kjyivbuQHmlInuIvPLFZ+L3tM8SinkIriJqTN3cFq5YBcqXFTXiKkfYtdvtzz///DlOs88//7zdbpNhikiOlniimZOg3cC5hDGDEFvOpUPtkr6gXaj41bYKJG0/YTDSXlO5k2Yu5ptujEeQJ5S1cUyJ7956cm3Vf97E2JPrvX/33/j4afCsMlqVzcbGBqzmdIiSPGKGiz4bWKiAcpBPxc4asO1+DEYFYmj7FutjeIDzS0WtDKFvFCdwlXBcErjSI2q2xFUU5zk5UxFc9evwnrxajV7a39UBI31DDgqK1jzM3zp+pUxNJqdic6Fia3kFs2wzeRVsQ/dvpN+4Pd3v9g9D2xau0kfUKK5yPdu5Wq1W//KXvzzHCfaXv/ylWq2q2dLb1R3Ruu7CueSldkQfapf0Be3S22RHNIP4NHD8vdkR/c2f/fHz8D+fNzH25Po8/M8j7/1RcUgt8gw1zShbaW9yFlC7+NvYaR8VP0a1Y3Mu7TStmQrF9PkFr7/8Kyez9VeY7YMDLgEhO3p1+uZ2dtrrat9WuNIDjPu4kirvp2drvY2NDe4CwYI27uyveSDSy50is05Xd9pH8bGpxZHlFXPGBsqr7m5XcEjgyk4NiBFhu7hiwTqdpxxvrmdJ35VK5XlPsa8qlQohQkXt7dLmZybIqxTzxWOFVj/ULumL6y46Z0hzXZxU9eDt9ubnb/zkD8+bEnt4feMnf/AlmkFjnMCmeeiLHwBZoLKDcTPSXymM/4649yuybWUHeNgPD0Qb9yKlIgc+XnXo67xT9X2sM+ejE9ii5CVVVDwviocYcbIPwVUiqXoYrqz/i3FcxUJe04te4rTs6Y9BIt3T3u12fTkoVnOReXja+YVR5RUTEwbKq+7OijWoit07XCUKzyeUWY5gGhPtsndCSuvCkhzkDSs0HGqX9MWM5ISQCmzL8UhCyqaW96wbCQ+CdtkVowrXkI2Eic0ivEhqnVzRUsSpWTfWkyWeFdbr9eLHiMk582GYOAqFjBYhFcWjTsw6A4XUQFxhCKPgKlrawSFvgiurfXLmRJSOtTRVKOZPTU/FNxIuJA6yslWZlPKzUcxURpRXFM3Djarh8krbpM8XWjaHKL89wRUX8AZuUO3XSB4T7UJ8k2RIwRzIIdWuDBQyLql2kC8ZGoHEl8WA8sIw/PLLLw+1S/piJRgNQhLoMITJC0/i+AmUJ7hD4Coi+RMRZyKh2+3utXb5t9+tbPnZu7d/4yd/0KQpT4ouU0+DzkxGYpRSbVtKVYpysoxqGxF/ijnfcpo1JMWdJZGqmF7SRQI559gNw7BXe0cD9zzneDEIQkht+WAVneNiThSa8iSONwRXzCXZElfRkrsdpEtc8TyxmalivlCcmp7OF4onZhaYaoXXca/JQmS8Wy6WhPJAW9x58seNEeUVJNJm8ooDGS6vqIl1HlENQ93uHa643MCuKq5y1JZjol2C+BXa5aWSFnRi6E+SQB/xU2dTUqXEQ90AACAASURBVAlTjfu+fxgZG3hxVR8078WzwJm9o+ZVwuMengXOOC9xqQ4N/xxRu/wf/6W03Z/g+CjaZe/g8Y2f/CGwoAQD6N4zHQ6d9ku8eLauLsYGW2WBR9plqr/q7vu+591U7dJfFl7EX9FJwB9B1jizJ+IK5vxCLFsX0aeTszXFlUIojSvWH9oSV65plwSu+qkK/bDemasuC6jcQoPcJ79kZr55ZmeuVGKHQy/GdeSW8krL16flFdk6XF4FolP3+tDxNK50uSEQPYorx6/GRLuEEiShFaMGglKBc4D888XTJCKx+Ka8pHJWGw3/OtQu6Uv3u9Bfps3F8qBUDCQpLp0bZIGymH8S0PwzkB3Ro/su21UwHObz9V0w3u6Ozysk5fmluoCerUEGEo2k5ZvQRj5t/1Oz5fV1pjP1tctMJaZdlnpBEFiG7vSiGL94ipnN4mFEteJPzFQUVzCoN8MVh7AlriJlYJEx4qpfFZjHVJ+adVmeaypeUKvw7Y/MITDdeeaqG8pLI5/mxKw7orxKRMYS8koHNURekbyJ6embE8MO7AWuWG4AffbiUe4c+Tcm2oWk98UwIb38eOW7BP807Y/kI6FVu9BY5rsAZf9wr/6gi+suoXjrRJsuaHme98UXXwQSqOX91Bl08BN/+hINIEZhjsHs+tqvu1DgMrRNrcBZ7Uvps0AsWcrlQPbeJyLvlAvpOmNqJvOl0W5/rorbGVOe58laveOLdzK1GAb9XSPTN33fX5xGcSq97fxCN+yH9fs5XYqrQFyQNK4Y8d8aV9J/xRUjY645TydmnX7x+ambaHxx0GZ4VVdGsf6q/ojyiukwA+WVToQh8krnI94VSlAxlADAXuAqcbZTGDcmolX9cGzWXbw98FoUjltaAYfaJX0xMpbwWoBgzvO981rwxq+9dtm5dZmgZ5DyWjzbaeGN4LWYRIu2IkL6GwZuMTIGtXFS7qF2WQwCP1nH98yVSn9dxPM820EyvTSa1+JbpuLIuFpiTpriKl4ZhUF4d0aO+O31egP3ySP8FXtpNIpv3xxZXtHpHyivwnHyWjbDFQ9A81K5Ob1eL8fXO44zJvtdEmNW24TcUpb0tkovCW2/CxnjbZ62dKhd0he1S3dQXX0taBGIsxIMTVvqxRfzefUGpS3h9//ysz8+7X3N97uEkvAdpurqq2TRm9UC48IsvhlYV59zoSfJqSodKKYxuWjmV3e/rj53U95KK7whuHr85OnouNLy8mlccfjqHASm57yR6urHDkQZUV6p+7VHaZb+rh6wlsaVClXFEn7PUa21Wq1x2KsfiBtIfU5oeray15ONYCOe16QV+BVAiqfwMCN50MXdlD1ZNSUBVVQRkd09OK/p20tf573637n1RG1PFdwkKcniDT0HPsEmLuQS+Vr7nc5Kb9g5YFYJZqYSiPWa8Hu62z8HzI3XkE9MzCG40qNmR8DVolaySeDKl+I6qil5g9o6FDUqVW2d6fRVZxvyiruOBsorqqLh8kpv06cIIR3druNKnWBlNJrKkTesM/bXv+53Eae//vWvqDNG+TLE21I0ewO8+HA9tvbocYZozphiKGGtHGqX9MU6Y8w54TykIUxckvKhXeCCWmdB3BTln6FFA0yobYCh4H7jcXhi7k/XVv31ja+PB7O+8Z/XVv0Tc39y/+h5I69pc84PjA75tmZJYOsCDFmmAkgFkxcPtUctLExrUIiWODeHM37StYvzVzUEm+31eqwseX5hAK4oGQfiilsRR8UVq3DOVBK4wp8Jb8kXh4Migt9zXL7Ps1KK5xe2J68gkTaTVyqXhsirxJCVid6gHJzdxZW6XwmvMeC6C1tvtVrVanWfayRXq9V2u/3FF18kVHSv12MgMhEw4S9bLmAmCKFqVkHDcuWH2iV9aUYyp19au9D2URb4u3pq1tqT4Lu3nnzzZ3987rWNd+tz5L0/okayyg5KZOKZ1CDau11dGI8lXPhbnZqV2Gmhqp33qzXtj99pbInK3DvEVSjBKM9y6H1xPviL6qEdyitKpIHyKtHzzeSV2tZUS0Hcfdk7XGklGN7M9nP8R3fk3VVkTDe2uypWoJT+NX7hSXk6Tg5JgeubeuSdOkilINHPDhDuXjzO69nGn4Rq9c2s09jat771rVEyUw/a56uvvgrMq1DcB6a2ySaC4YDgKm2yDcQVExpxYRr7EhLBRavTl+C+H9+1h/aH7DLmnzSEtWOeVYJB53UdpSf78vTtHDKFWuJfgZSfSgigrp2CrKKTPCVI0rjinQNxlaifmEVcaTpMRnFFBUmeKq5yfPeu1xz0rQYf1b5yCH9Ck6sTHUjihLertSyhXbpb1YZ73n7C+F6cSIlallprSMXKAcFVuC81B7dVy3Kg0Fepp5ExjjfYopal78vZZRR8lMu+WPoJMarc6cm6DvswEFeqKtK4Ys5YdnGlhTgziitm9JBEiqscBx/GDyDCxa6Ttdq/xPvS+i0UG0G5G0poj2/393jrKdddEv3kT4Wgb6EA0k4fDOOH5BDZNI74JfvALpFbnlTDVgNfDRnadMpjfuOPsKXZ272t8v4mB1sxRqE4Pji4SsNj/HFFlo0zrtjgQFxpRnJGcaWJCRnFVSLEmpBX/d2U/eU7qVET7tbynXnfpK8/8vId+9Dd2bIwzuMLd7J8t9vpBnyFGk2JvumsY1c5x2iSkCmckAn26Sg4hTgi3NyT/Mvu0GVhT3x29V2CIcvCX1NchTtfFt53XDHNb5xxpR1L44qoyy6utNxARnHFNdeB8iqX6VlE1BIfBF+QWiLTKpYJyHq7nVzBF3lxO4h/KkyHz6Lxl840wTabRV9vXCWGnAlcwdIac1wNl86Jwk5ZxFWihFIWcYUhbCavctkaHvugOEhAxLOgoU4b39Ib0i8NxQHnuxJA5IMqa3QeemLHBSPvsB04bTInjomw7IrjneCKd2YIV2TZOOMqLY4VV5zO2cWVpvJnFFe67hKk5FWOwwvieimU3UndeNoP9t/SKunFt18xlsc38UHPrjR1SPGubMgiENldJUpoC1m0gEgOX4wmsllTsxP3841dSUMksHw5p1p7NZA4ZKFynT1nC+Rib7+qZytw2Q1FmM4QlSyhbWFjUxwauMAwC1cISaKDgCsdQlZwxQr844wrUm8grhJbdrKIK81IziiuCCR/kLzKBaJUvTFLUSD/eCeRlFik0rdwbvAR3MMop7amM0Qpzka08zpJSARCUMnqS5k5bZYM9ix772uQUpW51JfdxVUQVz+ZwFXiNIrxxJV2Po2rEVNAxxlXDClnF1e6GyEtr/qnhwVf92Qb+i6kHX4nS0B0tkBq4EsW601MV2VP+hvOlkTHSFLaAjpRCVx9hJ3UtzxDsk2420lceoIQ/3VwcKVkzAqudKfF2OJKH0njijlj2cWVFhjOKK40Zywtr3LkvS/pHJ44vByVJ16eajDPYou8n8PWZ0PztckPfbDb7W5sbHRtm2gQBBsbG/imZ4WjyRiOQRshFXwzYWhfEI6KCd92eAWyJ0DZg+FoGb5e3ItX4PJ+9iQ9RvZZf9eBKKZ1kigIaACSsKSS9kH7jAtYV+rppjA0mzAP+QpCKjBDjCwO4lW4OfCDg6uErMkErhguH2dc6aDSuIJ2yTSuEhMni7hKmOwJeZXTu9l1MpgdIrnTrwy2OtuO49dBevHjncO4XRPuwUYQdeLYpe7zS9gnfIOMx210I5FOyAOCKyIhQ7jSMipjiyt/aNxG03kziitol0zjinN/oLzK8d16TJN2CMNeX1/nONNAVFSR4koLWgf+Do7/4iOBKX8dP/HniQu5IcfpsCIpm+rt+DidUEwhklXjkrw4qRIDJE0SyECDBAdhyvcqLMgR8hj/guNPMmqH+a4EOr3tH//FWkO+GC8HB1e4IVu4omgeZ1z1xC9J44qiObu40s0iGcWVHq+Zllc5PulbeoYq8158uS8Q1aov47DZISpJ5V8gITxFsy9+N6Gpj5CaBH3PUhjZJikYSC6gYkgP6QwlXyUwla6wINsILIWpby4/qaRziXcGZr9oPDoxJ7VBpZsnSRoKFxUECbng25Kj4lhlBLCbmGa+OdSKqlAMFuUUHmc5EPSQCMOUZvsHBFfkYIZwpTstxhZXbHMgrqAgM40rhpWyiytdc03Lqxx7oAgIzVEin4iwBOfIDI5ZO+qLVcJHAsm8pnlC/vl7dpAOfRcyXumrjydIod+TPRyX8kYnJ7/hfwl9sl+J4Ps+6yzt9gFN/exP/snfFYtKN1pJHFSwyQFNVNsktRLha48rX9ZOs4KrxInu44krXgNxpSXPM4orFc0ZxRWAtJm8yj1+8vTwc/g5/Bx+Dj+Hn939HGqXw8/h5/Bz+Dn87P7nULscfg4/h5/Dz+Fn9z+5VqtVq9Xq9XqtVms0GrVardVqtVqter1erVbr9Xqj0Wg0Grit2Wzink6nU6vV2u027q9UKvgXzrV0HKfdbjebTTxSr9fr9TruwW1o3HXdTqeDV6+uruK9juM0Gg3XdavVKjqAp3BoZrPZLJfLruuyJ3gL+9But9vtdsuuRqOBTjqO8/jJUw4Hd9bsajabaLzZbDqO4zgOelKtVlutVrPZXFtbq1ara2trruuiEdd1HcfRIdTrdXzJB9Fyq9V6+PBhp9Mpl8vlcrlSqTx8+BDfo89oEwRBU5VKBTQHMfHGer2ONtH/arVaq9XK5TJ+b7Va7XYbpC6Xy47jsGU0jgfRZ3QSBHQcBz/r9ToGjiGjGxhXq9UCzcFWNALygrDsPMjLrh4EXOnAs4Krx0+ejj+uwJrNcPX4ydOs4+rxk6dZx9XjJ0+HyKvco0ePlHN4Md7d6XQwhlartba2Bpa3220yFf0DREho3NbpdDqdDsGK3j969AjNArLAHxiJl7ZaLYwHv4NnoBFeihd1Op12u12pVACaSqUCquERkhL3g53VahWEwMjRebANvKxWq3gQJK5UKhwpQIOraRduW1tb4yTBSzudDp4CcfAKzMlGo4GugtqEMl5aLpcxjdE+kYo2QS58j3ex82AtuYOWAW6AFaRgr/B7uVxeW1tDz0lD8Boowazg63ABEhQcIOPjJ087nQ6RgLccHFzhl2zhCtplzHEFrbAZrh4/eZp1XD1+8jTruHr85OkQeZVDJ9AEWoF2goJic0QPesP+Qa1BX2EM6Ch1IKmMxh3HgQKk/uRFSwccxT1QrWgB1hPvhAXhui7sDjIA6ET3MCvwDbRLp9NBB3gPO6bkownDmUl2YtZhpDq10GbDLpgtpLuOrt1u6zTmxKPOxwUzBORFb2kDkmt1cQ7QIC0p8JEiAO8C7yAFOFKYLUAeJx5oCyRRwnIsICMagXYBQXjPwcEV+pYtXEEojDmuqtXqEFzBd8k0rjCETOMKAaHN5FVO7Q6Qhs3hX/DIwOa66e1ms/no0aN2uw01lRgw+gdwuOaL4fW4k5qzUqk8ePCACpMoofJH451OZ3V1Ff0EWOGCoWPQ5FT1aApPAdBqYiut0ckE7UA1mDAtixig8y3zdmHprK2t4VkwEkrbcRz0EJ3kqGn+gLDker1ef/jwIbqBn/BJHzx4QOOCcYNKpYJ3NZtN+OY0KhN2DQYOGwTQB3bL5TLxgUf4ODjVtDDFgwcPyuUy5YWyry5hFhCWfjpRdHBwBQpnC1eYC2OOq3K5PARXcL8yjSuI5kzjCkDaTF7l8O5Ezxrmc1GRUkk2Gg1QEDSqWzS2bo4bvgHmqtUqbRm6sVSMGDlB02g0aGfhd/QSF+hej5sn8KYfPHgA/AEWoA5sFseiwIAjutGy+CaGCVJynlDDw5lFV9lDvBF9q5uTSIShw/DQ4QgDrGgQo0NnwDmQF51B3BaAcMSjB7fA/oZFitEO3g7C4kvSx7EgAyeSIhJYRIPoCQmCx2mG4C2KGzjLNYsgY5Jw/hO7BwdXjLRkCFfULuOMK9UraVwhFJFpXEG7ZBpXsCw3k1c5DgwXlK1jcb3V1VW0iwnmWlgQpgq43rSoH20B/k5i1eNrbug3rABGHqBaMVSSjOQAHcE5jrllsVSwk+tjNQsjojXwCbxEa44FFvFfAhHh4Kqt4JEmDTHAYWIAakQ2AFqzyCnCr+whXgfHE6TA2x8+fAh4wXhEC5wzdVn2BAjYDU5R9J+zC0QmQcBEGl8wQPDgo0ePcAM7yWXDpiwhNi005Ji/T2sRdH7w4AHUNrhZs+vg4KphUekM4QosG3NcQd9shiuu6mcXV1g6yjSuVMen5VWusX2ftJHNWAdc6TGMdayurgIoxHTdgsJgASfzeMbQHj95uiuxjoziamxjaENwBXdzzHE1PIb2+MnTrOMKHmSmccV1l4HyKle3FS3qz4alWCS8MNd1Hz58CIrTI2u32wBlU2II7DdVNxBD6tMLxr8qlQpsH4KAjMQr9GYOFYPEG0ECjNOV3DtQjWqWnKb9RYsAcwnoB1bQAeT2ra6uOpZ6WDeDggOkWVSzjBfQkyYSUIKnYGqht8ScopyvJv1bttxKE6klOTk068gCIO/hw4ckBQiOIcCTrVsMwbGwQ9NyDV1LdEEMAW0SOiAauoTMHMzzuplFyqyDgKt2PJs2E7ii1TzOuGpJSkIaV5BrmcYVh5BdXMGD3Exe5aAny+Uyxobf4WGRWHWLGxKLNfNtyZhHjx7VLKeCPMaLCVCQw7HAKH5CdQNGzXg2XtViwXVLP4fOJy+JjIbFPdHPhw8fglgg4n/8x3+AEMp+2EQ0r1yLHiDLe3+8ioZFWsmVlkV7XdclfGmv4RcaO5jJmDBEM2Ymg90YFL+pScJiy3Lk8SBGjegtegh5QesSRk3dTDlMfhCWDjv/dXBw5VgQP0O4gh8/5rhimGggrqAgM40rxCczjStdbkjLq1zjwGwxQwAHDXY6HZpg5AFuW11dhbrmFCIjaWGtra2trq7iRQ27qpYpD2vCsVBp3WwxjJeeaaVSAd2au7fFrPY8ti4SYQdz6yKG8wy4+uVyqTRfKi3M3N93XEG7jDmuOkO3LjLhKru4goLcdVztp7zCEDaTVzk0iseg9gECWAT4hpxQQhNJSBJHCxgVjA7wsl6v48GG+Z418btvvFbMn72O79HOtbP9b1YuH88Xivo5Oxdht1arNRorl44WS5fvNMxxbrfbn146li9dWpatYQ3bOQxCAF5gOToGnlWrlTfeKL+4GGVQgKyIES/PVf63iTI+f7fUcV23XndfsG/4yU1UZm1vFLg8/d3yi4stRm/pL+NaXV1tmgPOacw/aX/VbJEQIK5b2oYrW58ajQYAgdnbtOU72B11S9tvt9sPHjzg8DF20AQ3N20Ru27pPQ3bv02jFbxGg5wkrqXE4M6mbcjaW1w5sxPzpdJ8qTQ/MVuJ4YreBnFFpx5vqZubT1EiuGpwpMRVzbZcxHF198pCqTRfKn36z5vjKhpXGlfzn0C7XPltp4M4PoDh2ipu3aLwbgxXUTRjJ7jCYuwz4mruNZ2Sr/wshqtPLx3jv0o/+KyPqxuvxyfy1rgiEwfiChvdd44r7fC5nw+UV3OvxKVQvlDMF17/YMe4IhdSuKrRVxuEq0/eKhVfeW8grm5dPFqcvBEFBjtJXH3yVqmYP/qD28TV9XPpcd3YDq6Y9jZQXuXatihHPa9qlpqT9gtvq1oiGtwrKk+qkJoE3B3ZYUR3u9VqXZ8s5s+9DxjhpXOTxfy5GxjY8tvH8sd+eIcZFLcvHykU80cvL0f+8spbpeKRS7f5ilardefy8Xzp4r1Oh54auteyvUt4EcHaarVUVby4GOURGilq33mjnJuo/FR26mIUmPNUnx++W8694S5GTG28aA2e+dBpSkoimkWgoBFfbGSbalB0bC8YjUfGbWGSQAQAhZyiNVm1wy/qzwLuruWKkN01c8aBY8YlWhbVZSM1yWNxbUGLRhP6vA+4undvohRpl9LEvc8UVzUL2hBXddt2B/Ji0rqSmQM5RcO8ZlvqHAtMV20tV3C1MnuzVJovlT6ZH4Sr/h7GViuBq3qt77tcubs5rrAyTGHRtAQnyvpnwxXmwrPh6vpk8eyc4Wr54pFC9Gen06nNncsXjl2+A1zNvVoovnotwtXcZPHsnOFq+WKpUJy8sQWuCJ6BuIJo3hmu7lw8WswXXnt/ZHmFNu/+4Hi+dGl5x7iCvTsIV9WWlRuI4+rGZF89J3A1x3+9es1pD5BXy2+XivlCMX/08l3i6vq5fOHcL3aAK3BhM3mVqz3X+PJ7Z4v5c+/XJQ743tli/rVfwFVc/G9H86VLy7E44PVXCsX82WuNRqPZvPN/HymWLt9tS9bKyuXj+aOXlwdlrcDEbm+ateK+MFE+82Esa+XDd8u5ifJPts6Gck9NlE//OpG1Un1hovzCwrCslVHiy+O/bgGEtfd73WL+H0y1lOZLpfnvzyfiy//6fflv6aU7KxBt5fvf0+9fvv8bzOpPV16S7/9+tgqX67MZeCefzEa/zJdK82/+0nEcx1QLPx//Ary7f/9l+X7iaqWfDfWb2L+gXa5+tttZdlviCtlKu4Krucli/tz7rVar2bxz6Wjxm28vE1fLF4/lj/1weRCu3n21mJ+cG46r5tB1C/guO8HVp5eO5Qvn3t32usX7ZwvF1z7YhSw7mmXO9rLsbpwtFM/ODcyye/flQvHs3AB5NTdZzE/O3XrraP7o5dvE1Y3X84XX53aAK+r4gfIq17AMbvplZKpjeR10werm98G6oXVMKdBqtRgkperDz6bFWPE7pNsH/7WYn5xrWXKI4zjXzhbzk3MPHjxwHOfTS8fyRy+vWBYH1Pu9H57IF/7r9VrNdT+5dLRY+uE9NStWLh+HQuKcpOFD34XBVtrC1Wq12ay9OFF+YSFKIW+1Wo1G7btvlP92rm/+AEZq+2NQs/9Uzn2n/IlFn9tRmkrjxYnyqX9+UDfjEYqdiCfmWlaNgwxGpjnZVjfrrGKbaRlM5xSitqBBt7a2hq42JE8RiK/ZVbfcdqaLwIxyLXgNwrqWXuJa1RAaLA3bFAbaNi1BaM9x9fs3S/Ol0vzLs7+P4mNv/r6Pq49WSqX5Uunm7KfA1W//4aW7d+r1+s9vRUsd92BV/Ov3J+7dd10XQaqXf/u7Wq3m/u4fS/Ol0vz/9at6vdW6b0pl4sqq6zjOB8tRy3dct1a7+474LsAVPJKJz+7WarXqb/8B2mi+0ahWq5GzMv/9+Uaj1WpFkbGbs7/ZBFfVahURpziuomzdneCKVSx3jKvbF48Wj1xageUHqdfH1Y3X84WzNwbgauXy0SjqMARXkMKb4QrTeQe4+uTi0WLp8t1tyatHjx7NTRbzR39wy+QVegV5VTNvSeXV2toatpJgInRsZ27NEq7ceASV8gpEGCSv5l4pFCdvNGkmmrxqNBrvTxaKkzeS8ur6ZDFfurSCtYajl5eJq7lzDIU9G64w9zeTVzmoWfxE+Tk8DMrim4atpEHjgUBNC+6jNx2r9QbaPXz4ECRzJZhI379u6Yk3XksHNIv5s9cB6OW3j0HTVi3VodVqrb77ar5w9NJKo9W6+1apeOTSCrQrELD89rF86eKyZWpDCTdtJZPKGf/tWFG5hw8fViqVFyfKp39dhSm0trZWqVT+bqJc/I6urDjvmB9QsySZzu/rfzNRPvNhFHwAv9vtdqfTeGGi/MJC30+ko1Cr1bhfl+R1XRfmOUaqvm3DlijZSM1WTZrNJneK0eir286smsXoRYn2i9NxII5l+JChaN+xTFPiqWLF8kBYUInh46blywMke4orCytdvcvFj+VfRriqzr48XyrNl/7xdy6NKcdx3NUr0EP/8NuIVhGuyldfni+V5v/+//09Sr3+M7yiN/+t7bp3Igdl+QOA2RTGxJV/d5rN+/bfX0WQ+PcfTcyXSvMvzzwArj78XvTGqr2l9NLKp5AdvzJFdd9CfzFcdTp1CWoJrqKF2Z3gigbBTnE1dy5fOPbWMnD1/iuF4qvXBVfXJvOFybk0rq5N5gvH31reAldc7hqIq8dPnu4MVx9MFoqlY7qyO/neVvKqdfcH3ywUX70ex5UF8UirmLxaXa1YCWH1BprNJpItq7YjMiGvGJFLyav3XisUX/lZBVE1lVedzgcvF4pn5/pRilqtdvvSsfzRy5/WatVq9falY/lj/3SbuJqLr7uce3+7uGK1t4HyKtfYQeizueOQ+vvnivnJubqE1Ocmi/mz10FlLNHfToQ+587lC8cv32277idvl4rffHu5LqHP5FKNhD4xozYPqTfOTJRfXNTQZ/3/nCj/zfWoZEW1Wv3p/yjnJpyfxkPqP/0f5dx3Kx/HQ+qO47TbjTMT5Rc+GhZS57vgUwMQDNw7trWY07UpKfbjs1TDyNjoSzU7xdWDGeiJic/utlqtlTsvRX6M065Wq44pgKvl+FJN5JS8NPMgHlKPx9B0LafZvG+q64MopG4q6h//pVavf/ajjyLtEuEqekW6qfvWq9Kbv49C6pGC/OhHvxl5qQaAcYYuAY6CK8Rkdoqre/90pFA8cnnFcHX9bKE4eUNwdeP1fOHcjQSuli/iqS1xVR+6BMi9+s+Kq+uvFiLpAVzNTRbzhXNzW8qro5dvb2dpubb5EiC0y/aXAH/+SqF47hcDl2o+OFsovno9klftdnvl8vF84fU5w9XtS8fyR3+wPBhXv3i1EEnj0XGF+ORm8irXfK55nAjaar4d4oPoz53Lx/NH/tu9eL7d8sVj+cK567Ua4rz5czc0327uXDF/9PLKoHw7qtnN8u1emCi/uBhVQ3JdF+rh75aiAKjrupU7lb+ZqEzfc6C3G41G83fu306UT/86sjsoHarVKhZyXlxs0fZsWLEjIBX+clOyWWrjdwRFc4Q8ThC2uY/5wffTqxfRIsr9ZrNpKysT77jxPM5Ii0zMVmN5nHc/m6DWUVt+bW1tdXX5x4tR7AscNO+k9L375VbLdM8n88CVJRq89KN/7+Oq4q6jjAAACjFJREFUYVE4/GvWaWOMzBn71PYk9nHVbDIWkcJVJKl3givItR3h6sbr+ULxyOUVwdUcwjJ9XL17Nl84977iau5cvlD85lsfj4IrDG0zXLGK5bPi6jqSDvq4uvODUuH4D+9vLq9uvYUUhs4u5QczuNfYXn7w3GSh+MrPDFd9edV23evnCv2csUqlsnzx2IDgUKF4dm4QruZeyxdev7YdXHHdZaC8ymHknedU5/n6ZJR/XDeHce5cMf/az/EirLsgf8513QcPHtRqc2cLxdLluxj5u68W8+feJ2sRS4XrA2whjgyIcK8+Olm1wjvwnZvN2gsT5dO/rtJsL5fL33mj/LdzUVPNZtO9V4V26XQ68MFnfljOfbe63Gika3dDu8B3aVjgsmVrCTQQqLrqWasfXpctx+gezd7W3tYPt5X2m7P3IljdiyJUN2dXqtV6+SoUwPf/tY+rRqPRqs7S7ajZKqXrug/+9f/hyg1GRBGvsS80og7Qw4f/wpyxCFcPZl6yVxuurLyj/et798sY+y9lCadh9TaAq4qdqzEIVzX+fGZcMWfsGXF1bTJfKE7eSOBq5eLR4pFLt4mrez88gfzXCFdz55DsNCKu2L2BuMJ03gGuPr50tHjk0u0+rm5fPlI4dvnOpvJqbrKIjCGVVw2LQdUt/aEek1eRB5PCVbLcQFpe0TVJyatr52xxBVqB8gqKB8FJtJDA1a23juZLl1Y2wdXtS8fyhXNz28EVdyMMlFc5ONq0DsgPMhjNPXjwALqLLpvKqZaUIqhZygHup/BiFkRN0jngqdTk2JyfvlLMvx7FuG9fOpYvXbxtpkFjJcpIvkNIrVwuFYrnft6GgeNcm8wXjl38NGIPGEnwsZQvrK2aLZRhdtXr7osT5dP/X7zq30I1N1H5zm8i6+B//vdy7g13hVX/7lX+dqLyxu82q/rnItTW2rzqH2dyxw66oHBvWpjYsaKkNQteqdomm3kbIYUJ0LAdDDVbXyGaGxZocl231WppngkddkbbXVs5RDuYJ6wEU5MgdUOS0PYEV+6PoQxe/s1vias7dxEce+lqud5oNH5lGxXvAFf/8o9/v7Lc6XQ+sNWaFfhwv39z4t79/v3zb/4yQsv8m/OlN/+tLdrll7Va7eHDD9+cj6Ugc2X+nuFKm3r48GG9/qs350vf+02lWl2JHJ2FmXuNRr1et05eud9sNne1muSWuOJe/WfA1e1Lx/KF45dWBuFq7rV84dilFeBq7tVCcfJGhCs89dbyNnBVlxImaVwBdTvC1XuRuMCzv3g9inp1Op3mjdfz5gRE8ur25SOF4xdv19krEHl1dRWBO9e25tQpr8zIVhUIj61pK8Fof6C8ci2ckJJX118rFM/ODaxS+v5Z+5c7qErpyuXj+aM/+NTIMneu+Op14mru1UKxdPnOtnCla65peZUbHhms7ebmgAFJ3DdeK+bP3WhJxHlusph/7efog250Yip3LRFx/uRSqX/DUYDeHbQ5QNVsS5K44bXovsjiu/39XM1Fp7+q/8NKrVZDukWz2fjOG+Xcf48YT5SXy2WE1LTBv7nWl/hNy+wELJq7tOmktscrZM3NNzOpdhkx4rwTXP36dj8tuI8rUzml5V+i5fuyGwaLKAg4fBb//qW7KwCJxcf4eWnWadfrnyXTjudLE/fuC67mv89/Lf8KuEqlHU9cWYVl+mm6tdLCzKcVxVWzZmv4KVy1FcANqYa7XVyxeM/2cXXv0tF0pOX4xdvRi5bf7s/ZI5dWDFfYWZL4HHtr+Vk2ydXM/doFXF2b7Pfn9Q/68urn0C6UV5+8XSrmz15r7+oKme7AS8ururibJq9+cTZOwyMXP6nX65VKpdX6efJfl25XUrhauXw8X7r4qeHqdlzAHrl0e7u4YvLhQHmVewaHgybArihwx9YPt6nA3e2Wr2egdoeGYW33yow/R4djuGHI/o9iGOr5dLUdOLJjiStzOJZ/tRmudsvh2E9csV74OOOqLlcaVxhCZnG1dfn6TOAKq/qbyascu86Me0fC8Vgig3LGDU3b1YUbKnbyAZlBuwBcrNvqHAkHt6ZhGXscAM0TLoRCByrXMbCW7YJEr1j/A5n42FpVt8LUGAJnFK0z13JpaCNUrZ5rywowVK1SBV5EBrRs3xOGRuOOkKrZ3q6Wpes4FkdGqqWaA+3xK4batKBt3SrKEJcYETFUt1X9lpxx1LZjlLKPq7vRGs/tX2+GK9eKBGcIV4+fPB1/XDmW3DgQVzxvO5u4qnEImcYVnODN5FWumZFCvJ0db2hnsUUSnYbD8yqYmt3TDwliiKqWXWokfi1w9dsolvXxLzbDFa5s4YqpPuOMq8bQwuH0mLOJq07L6upmGldQkJvJq9w4exu7q73pu+xEezfsoDpiy4lXUKhJyFInTN3qVTRsM+PYWoXb9TaAsLGyCvcTV7tiFe4zrli+fpxxVR/qbUBBZhpX3O+SXVyx2PZAeZXj3XUrdVm3vaagBQhBlcj34d24Bxttmlb0FGxomvdEzLlWr6ZhKXHUt3WJeyKTj1RzZSsGB1m3AHHFTpSjDYIHmX9NwwebeznSSqXCpHjwDIh0LU0e9NU+16zaj2NZ9nXbyovh435YN6APbZy2levBwB1L6pd9th0W3G7ZKhxhUd3x/m01Seqy2FuzOisd2QutU4VTuiN739qWJFqv1zFJ6pKjqSj82uOqXq9nDlf048cZV+zeQFxBQWYaV8ytyC6uGBUfKK9yzbHc/s0RdnYvaYpwdPerAnRtq6QpUsm1ZVXHskpqdhYs6dyQcmENW77jGJu2XwHGC+1KCo6qHR0IlrWlsjdnIAfoui5FEm5wNt/+TfulOfZlBfYCV7V9ryy+c1yxEsw446o1tFwFK/BnF1dMtswurlgaeKC8yjUsI6Jum+8qlQorszZsr2wrXsyn0+mwNjgeUS5y/I7ViWrYjtCmRQAZriV96+ZZ1+3S9SJkZFarVVgZwCLUL40O3E9YgyUtiyCzzlhTyszVzMF0bHNs1arC0YvEBeLSjIILjywXoAeN0EVVbtXlnKVmfHeSm/1QDNddHAtYAw8HBFecuhnCFQyCMceVa2tCA3GFIWQaVyxmk11cQcdvJq9y7vMojfzo0aO6uXu0PurPWmoU/Xe3KjUK7UKtXjM3OcEkJWttaGnk6g5K2DqS88fpl63SyEQhtqnSbKHBdUBw1R5ccnuscUXRPM64coeW3GZ1u+ziCpGxTONKK/Cn5VUOmpxc5AJdzQ6ZAE0JO6URqc9iCS0rZ4t3O+YGUrdTS7OjDTmLzbGYIBgPehH6rZ0dCUxCtMbj6NaqpcO3JNJas4ina6uXriXp08asifUE2JH9AEqj0aAZ6Ng+A/Szacepknf1aDdWC71CRLVqR0DijbReaVIR99QudfOIMZ0ODq4aY3Yk8Ci4QkBjzHFFsTgQVyxKm11ccX93dnHFU3YGyqvc4ydPDz+Hn8PP4efwc/jZ3c//Au+Lzt9AQQEpAAAAAElFTkSuQmCC" alt="" />
字典树法:
#include "cstdio"
#include "cstring"
#include "iostream"
#include "algorithm"
#include "cmath"
using namespace std;
#define memset(x,y) memset(x,y,sizeof(x)) const int MX = 1e6 + 5; struct Trie{
int v;
Trie *next[11];
}root; void Build(char *s){
int len = strlen(s);
Trie *p=&root,*q;
for(int i=0;i<len;i++){
int num=s[i]-'0';
if(p->next[num]==NULL){
q=(Trie *)malloc(sizeof (root));
q->v=1;
for(int j=0;j<11;j++){
q->next[j]=NULL;
}
p->next[num]=q;
p=p->next[num];
}else {
p=p->next[num];
p->v++;
}
}
} int Query(char *s){
int len = strlen(s);
Trie *p=&root;
for(int i=0;i<len;i++){
int num=s[i]-'0';
if(p->next[num]==NULL){
return 0;
}
else{
p=p->next[num];
}
}
int v=p->v;
return v;
} char s[10005][20];
int n,T;
int main(){
cin>>T;
while(T--){
memset(s,0);
for(int i=0; i<11; i++)root.next[i]=NULL;
cin>>n;
int ans=0;
for(int i=0;i<n;i++){
cin>>s[i];
Build(s[i]);
}
for(int i=0;i<n;i++){
ans+=Query(s[i])-1;
}
if(ans>0)puts("NO");
else puts("YES");
}
return 0;
} /**********************************************************************
Problem: 1886
User: HDmaxfun
Language: C++
Result: AC
Time:304 ms
Memory:114092 kb
**********************************************************************/

  树状数组:

#include "cstdio"
#include "cstring"
#include "string"
#include "iostream"
#include "algorithm"
using namespace std; #define memset(x,y) memset(x,y,sizeof(x)) struct Trie {
int v;
int next[11];
void init() {
memset(next,-1);
v=1;
}
} dir[100005]; int tot;
void Build(char s[]) {
int len = strlen(s);
int now=0;
for(int i=0; i<len; i++) {
int num=s[i]-'0';
if(dir[now].next[num]==-1) {
tot++;
dir[tot].init();
dir[now].next[num]=tot;
now=dir[now].next[num];
} else {
now=dir[now].next[num];
dir[now].v++;
}
}
} int Query(char s[]) {
int len = strlen(s);
int now=0;
for(int i=0; i<len; i++) {
int num=s[i]-'0';
//cout <<num;
if(dir[now].next[num]==-1) return 0;
else now=dir[now].next[num];
}
return dir[now].v;
} char s[10005][20];
int n,T;
int main() {
cin>>T;
while(T--) {
memset(s,0);
memset(dir,0);
tot=0;
dir[0].init();
cin>>n;
int ans=0;
for(int i=0; i<n; i++) {
cin>>s[i];
Build(s[i]);
}
for(int i=0; i<n; i++) { ans+=Query(s[i])-1;
// puts("");
//cout <<s[i]<<" "<<ans<<endl;
}
if(ans>0)puts("NO");
else puts("YES");
}
return 0;
}

  set:

#include "cstdio"
#include "string"
#include "cstring"
#include "iostream"
#include "algorithm"
#include "cmath"
#include "set"
using namespace std;
#define memset(x,y) memset(x,y,sizeof(x)) const int MX = 1e4 + 5; string a[MX]; set <string> st; int main() {
int T,n;
char s[15];
cin>>T;
while(T--) {
scanf("%d",&n);
st.clear();
int ans=true;
for(int i=0; i<n; i++)scanf("%s",s),a[i]=string(s);
sort(a,a+n);
for(int i=n-1; i>=0; i--) {
if(st.find(a[i])!=st.end()){
ans=false;
break;
}
string tem="";
int len=a[i].length();
for(int j=0;j<len;j++){
tem+=a[i][j]; //string 居然可以直接添加字符,涨知识了。网上查了一下,string是一种类对象,可以直接用 +"xxx"将xxx直接接在前一个对象尾部。
st.insert(tem);
}
}
puts(ans?"YES":"NO");
}
return 0;
} //我一开始一直在一个个字符的添加成串,再转到set里面,这种方法卡时间又卡这么厉害,之前没过也是必然了。。 /**********************************************************************
Problem: 1886
User: HDmaxfun
Language: C++
Result: AC
Time:972 ms
Memory:7460 kb
**********************************************************************/

  


Phone List 字典树 OR STL的更多相关文章

  1. HDU 1800 Flying to the Mars 字典树,STL中的map ,哈希树

    http://acm.hdu.edu.cn/showproblem.php?pid=1800 字典树 #include<iostream> #include<string.h> ...

  2. STL MAP及字典树在关键字统计中的性能分析

    转载请注明出处:http://blog.csdn.net/mxway/article/details/21321541 在搜索引擎在通常会对关键字出现的次数进行统计,这篇文章分析下使用C++ STL中 ...

  3. Organize Your Train part II 字典树(此题专卡STL)

    Organize Your Train part II Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8787   Acce ...

  4. stl应用(map)或字典树(有点东西)

    M - Violet Snow Gym - 101350M Every year, an elephant qualifies to the Arab Collegiate Programming C ...

  5. hdu 1251 字典树的应用

    这道题看了大神的模板,直接用字典树提交的会爆内存,用stl 里的map有简单有快 #include <iostream> #include <map> #include < ...

  6. hdu2072 字典树

    这题印象深刻,我刚接触acm时,以为这题是水题(因为是中文,又短),一直没做出.现再想想也是.可能也是我以前字符串掌握不好: 这题其实也可以用stl里的map写.这里我用字典树写的.其实这题算简单题了 ...

  7. C++ TrieTree(字典树)容器的实现

    最近研究了一下C++线程池,在网上看了一下别人的代码,写的很不错,参见:http://www.cnblogs.com/lidabo/p/3328646.html 其中,他用了STL的set容器管理线程 ...

  8. 『字典树 trie』

    字典树 (trie) 字典树,又名\(trie\)树,是一种用于实现字符串快速检索的树形数据结构.核心思想为利用若干字符串的公共前缀来节约储存空间以及实现快速检索. \(trie\)树可以在\(O(( ...

  9. Trie(字典树)解析及其在编程竞赛中的典型应用举例

    摘要: 本文主要讲解了Trie的基本思想和原理,实现了几种常见的Trie构造方法,着重讲解Trie在编程竞赛中的一些典型应用. 什么是Trie? 如何构建一个Trie? Trie在编程竞赛中的典型应用 ...

随机推荐

  1. Gym - 101350A Sherlock Bones(思维)

    The great dog detective Sherlock Bones is on the verge of a new discovery. But for this problem, he ...

  2. codeforces-1139 (div2)

    A.如果第i个数字是偶数,总贡献就加上i #include <map> #include <set> #include <ctime> #include <c ...

  3. usb输入子系统键盘(四)

    目录 usb输入子系统键盘 设计思路 内核的上报代码 完整代码 title: usb输入子系统键盘 tags: linux date: 2018/12/20/ 17:05:08 toc: true - ...

  4. 类型和原生函数及类型转换(三:终结js类型转换)

    Number() parseInt() parseFloat() Boolean() String() toString() 一.显式类型转换 -------Number()函数把对象的值转换为数字. ...

  5. 更改Jenkins的workspace目录

    系统管理→系统设置→主目录(的右边问号下面)→高级(是不是忽略了啊\(^o^)/~)→工作空间根目录 点开后面的问号可以看见3个参数(配置路径需要的): ${JENKINS_HOME} — Jenki ...

  6. ext.net单元格内容换行显示

    增加style .x-grid3-cell-inner {     white-space: normal; }

  7. [物理学与PDEs]第2章第4节 激波 4.2 熵条件

    1.  R.H. 条件仅仅给出了越过激波时的能量守恒定律, 即热力学第一定律; 但客观的流体运动过程还需满足热力学第二定律, 即越过激波是个熵增过程: $$\bex S_1>S_0\quad(0 ...

  8. Scrapy 下载图片

    参考 : https://www.jianshu.com/p/6c8d2730d088 https://docs.scrapy.org/en/latest/topics/item-pipeline.h ...

  9. PHP微信公众号JSAPI网页支付(下)

    上一篇PHP微信公众号JSAPI网页支付(上)中讲到了公众号平台的相关设置以及支付的大致流程. 这一篇重点讲支付后,异步接受回调通知,以及处理后同步通知微信服务器. 首先梳理下整个jsapi支付的流程 ...

  10. javascript没有长整型

    记录一下前几天踩坑的经历. 背景:一个项目某一版之后很多用easyui的表格控件treegrid渲染的表格都显示不出来了 奇怪的地方主要有以下几点: 项目在测试环境才会这样,在本机能够正常运行,多次重 ...