【Rich feature hierarchies for accurate object detection and semantic segmentation】

Abstract    

论文的方法结合了两个关键的观察:1.可以通过hight-capacity CNN来进行bottom-up 区域提名以定位和划分对象;2.如果训练集不足,那监督预训练是个有用的方法,再经过fine-tuning,可以有很好的性能提升。R-CNN: Regions with CNN features。

整体结构:1. 输入一张图; 2.提取出2000左右的区域; 3.用一个CNN对每个区域进行特征提取; 4. 通过SVM来对每个区域分类

建立图像分类和识别的桥梁:用一个深网络来记性图像定位,只用少量的检测数据来训练high-capacity模型

检测任务的方法:把定位看成回归问题;建立滑动窗口检测器(一些特定的类别,如人脸、行人,形状是比较固定的)。

本文采用的方法:recognition using regions

检测的第二个问题:数据不足。解决方法:在一个大型的数据集ILSVRC上进行监督的预训练,然后在小数据集上进行domain-specific fine-tuing

R-CNN的三个模块

1. 生成category-independent的区域提名,按类别来做区域提名selective search

2. 大型的CNN网络,用来从每个区域提取出固定长度的特征向量

AlexNet,网络要求输入为227x227,所以对数据进行处理:把图片压缩到227x227的大小

3. 一系列的class-specific 线性SVM

训练过程

  • 在大数据集上进行预训练:在ILSVRC2012 classification上做预训练,只使用image-level标签,没有bounding box
  • Domain-specific fine-tuning:用提名的区域对模型进行fine-tuning。用warped region proposals来继续SGD训练。除了把分类层换成(N+1),就是类别数+1(背景),其他没有变。从lr=0.001(预训练的1/10)。每次SGD迭代使用生成32个正窗口(和ground truth IoU大等于0.5)以及96个bacground 窗口,构成128个
    • fine-tune时最后用的还是softmax层
    • fine-tune后就可以得到一个分类的网络,可以把conv层的部分固定,用于后续操作的特征提取
  • 用svm训练分类:为每个分类设计一个SVM分类器
  • bounding box回归:只对IoU大于阈值的框做为输入进行训练

测试    

SVM分类概率最大的为分类结果,SVM分类后执行非极大抑制保留概率极大的框,把这些做为输入进行bounding box调整,结果就是目标的位置

其它注意点    

1. 为什么SVM和fine-tune的参数不同(对positive example的定义) fine-tune:IOU>=0.5,SVM:只有ground-truth为真,IOU<0.3为假,其它 的忽略

原来的时候,是在预训练的feature map上做SVM,使用的参数和现在fine-tune是一样的。后来引入fine-tune后,两者使用相同参数,但是结果并不好 猜测是由于fine-tuning数据的限制导致,因为其中引入了很多overlap在0.5-1(但不是gr)的数据,这些数据是有必要的,可以防止过拟合。但是,他们会 导致结果变差,因为他们没有对精确的位置进行fine-tune 2. 为什么要SVM 如果只是使用fine-tune的softmax结果,mAP会下降

主要因素是因为在fine-tuning时没有强调精确的位置,而且negtive example是随机的,而不是har negtives

3. bounding box回归

正则化很重要

4. bounding box回归训练时对候选框P的选择(P,G)

如果P和G太远的话,那这个计算就没什么意义了。把一个P分配给某个G,如果P和G的IoU最大,且大于一个阈值,其它没有分配的就忽略。

RCNN论文学习的更多相关文章

  1. Faster RCNN论文学习

    Faster R-CNN在Fast R-CNN的基础上的改进就是不再使用选择性搜索方法来提取框,效率慢,而是使用RPN网络来取代选择性搜索方法,不仅提高了速度,精确度也更高了 Faster R-CNN ...

  2. R-CNN论文学习

    Rich feature hierarchies for accurate object detection and semantic segmentation Tech report (v5) pr ...

  3. Fast RCNN论文学习

    Fast RCNN建立在以前使用深度卷积网络有效分类目标proposals的工作的基础上.使用了几个创新点来改善训练和测试的速度,同时还能增加检测的精确度.Fast RCNN训练VGG16网络的速度是 ...

  4. Make R-CNN论文学习

    在论文是在Faster R-CNN的基础上的改进 ,实现的效果有: 目标检测:能够在输入图像中绘制出目标的边界框,预测目标位置 目标分类:判别出该划定边界的目标的类别是什么,如人.车.猫和狗等类别 像 ...

  5. R-CNN论文翻译

    R-CNN论文翻译 Rich feature hierarchies for accurate object detection and semantic segmentation 用于精确物体定位和 ...

  6. CVPR2019 | Mask Scoring R-CNN 论文解读

    Mask Scoring R-CNN CVPR2019 | Mask Scoring R-CNN 论文解读 作者 | 文永亮 研究方向 | 目标检测.GAN 推荐理由: 本文解读的是一篇发表于CVPR ...

  7. [Network Architecture]Mask R-CNN论文解析(转)

    前言 最近有一个idea需要去验证,比较忙,看完Mask R-CNN论文了,最近会去研究Mask R-CNN的代码,论文解析转载网上的两篇博客 技术挖掘者 remanented 文章1 论文题目:Ma ...

  8. Mesh R-CNN 论文翻译(实验部分)

    本文为 Mesh R-CNN 论文翻译(原理部分)的后续.Mesh R-CNN 原论文. 4 实验   我们在ShapeNet上对网格预测分支进行基准测试,并与最先进的方法相比较.然后,我们在野生的有 ...

  9. [原创]Faster R-CNN论文翻译

    Faster R-CNN论文翻译   Faster R-CNN是互怼完了的好基友一起合作出来的巅峰之作,本文翻译的比例比较小,主要因为本paper是前述paper的一个简单改进,方法清晰,想法自然.什 ...

随机推荐

  1. c提高第五次作业

    重写结构体嵌套一级指针老师和二级指针学生的代码 //结构体类型,每个导师有三个学生 typedef struct Teacher { char *tName; //导师 char **stu; //三 ...

  2. LODOP打印当前日期时间的方法

    JS方法直接获取.之前有个详细介绍的博文:LODOP打印用JS获取的当前日期本文也再演示一下,详细介绍见上面链接的博文,该方法此文不做详细介绍. 本文有三段:1.JS获取日期,2,.LODOP的FOR ...

  3. 基于Python清除破损图片需求实现

    处理同事爬取的图片时,其因爬取过程中因图片类型/网络等问题,获取到较大批次破损图片,现需清除破损文件,并做简要记录. 要点: 在python中,可以使⽤imghdr模块中的what()⽅法判断图⽚⽂件 ...

  4. [GXOI/GZOI2019]旧词(树上差分+树剖)

    前置芝士:[LNOI2014]LCA 要是这题放HNOI就好了 原题:\(\sum_{l≤i≤r}dep[LCA(i,z)]\) 这题:\(\sum_{i≤r}dep[LCA(i,z)]^k\) 对于 ...

  5. App自动化(2)--Python&Appium实现安卓手机九宫格解锁

    九宫格作为常见的手势密码,我们在使用的时候,是从起点开始,按住不放,然后滑动手指,直到最后一个点松开手指,如果与设置的手势密码匹配,则解锁成功. 现在大多数九宫格作为一个元素存在,很难定位到每一个点. ...

  6. IDEA升级版本后界面出现变小,字体变细的问题解决

    笔者在今天升级了最新版本的IDEA 2019后发现,该版本的IDEA出现了非常诡异的事情如下图: 升级版本后字体居然发生了变化(通过官方导入的我自己的settings文件)还是出现了问题. 问题解决方 ...

  7. Mybatis技术原理理——整体流程理解

    前言:2018年,是最杂乱的一年!所以你看我的博客,是不是很空! 网上有很多关于Mybatis原理介绍的博文,这里介绍两篇我个人很推荐的博文 Mybatis3.4.x技术内幕和 MyBaits源码分析 ...

  8. 2017-12-19python全栈9期第四天第三节之iterable可迭代对象join之字符串和列表转换成字符串和range

    #!/user/bin/python# -*- coding:utf-8 -*-s = 'zd's1 = '_'.join(s)print(s1)li = ['zs','ls','ww','zl',' ...

  9. Java面试题[转载]

    目录 转载 简历篇 请自我介绍 请介绍项目 基础篇 基本功 面向对象的特征 final, finally, finalize 的区别 int 和 Integer 有什么区别 重载和重写的区别 抽象类和 ...

  10. requests 获取token

    # encoding:utf-8 import reimport jsonimport randomfrom requests.sessions import Session class Regist ...