Tikhonov regularization 吉洪诺夫 正则化
这个知识点很重要,但是,我不懂。
第一个问题:为什么要做正则化?
In mathematics, statistics, and computer science, particularly in the fields of machine learning and inverse problems, regularization is a process of introducing additional information in order to solve an ill-posed problem or to prevent overfitting.
And, what is ill-posed problem?... ...
And, what is overfitting? In statistics, overfitting is "the production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit additional data or predict future observations reliably", as the next figure shows.
Figure 1. The green curve represents an overfitted model and the black line represents a regularized model. While the green line best follows the training data, it is too dependent on that data and it is likely to have a higher error rate on new unseen data, compared to the black line.
第二个问题:常用的正则化方法有哪些?
第三个问题:The advantages fo Tikhonov regularizatioin
The fourth question: Tikhonov regularization
Tikhonov regularization, named for Andrey Tikhonov, is the most commonly used method of regularization of ill-posed problems. In statistics, the method is known as ridge regression, in machine learning it is known as weight decay, and with multiple independent discoveries, it is also variously known as the Tikhonov–Miller method, the Phillips–Twomey method, the constrained linear inversion method, and the method of linear regularization. It is related to the Levenberg–Marquardt algorithm for non-linear least-squares problems.
Suppose that for a known matrix A and vector b, we wish to find a vector x such that:
The standard approach is ordinary least squares linear regression. However, if no x satisfies the equation or more than one x does—that is, the solution is not unique—the problem is said to be ill posed. In such cases, ordinary least squares estimation leads to an overdetermined (over-fitted), or more often an underdetermined (under-fitted) system of equations. Most real-world phenomena have the effect of low-pass filters in the forward direction where A maps x to b. Therefore, in solving the inverse-problem, the inverse mapping operates as a high-pass filter that has the undesirable tendency of amplifying noise (eigenvalues / singular values are largest in the reverse mapping where they were smallest in the forward mapping). In addition, ordinary least squares implicitly nullifies every element of the reconstructed version of x that is in the null-space of A, rather than allowing for a model to be used as a prior for . Ordinary least squares seeks to minimize the sum of squared residuals, which can be compactly written as:
where is the Euclidean norm.
In order to give preference to a particular solution with desirable properties, a regularization term can be included in this minimization:
for some suitably chosen Tikhonov matrix, . In many cases, this matrix is chosen as a multiple of the identity matrix (), giving preference to solutions with smaller norms; this is known as L2 regularization.[1] In other cases, high-pass operators (e.g., a difference operator or a weighted Fourier operator) may be used to enforce smoothness if the underlying vector is believed to be mostly continuous. This regularization improves the conditioning of the problem, thus enabling a direct numerical solution. An explicit solution, denoted by , is given by:
- , process can be seen at (https://blog.csdn.net/nomadlx53/article/details/50849941).
The effect of regularization may be varied via the scale of matrix . For this reduces to the unregularized least squares solution provided that (ATA)−1 exists.
L2 regularization is used in many contexts aside from linear regression, such as classification with logistic regression or support vector machines,[2] and matrix factorization.[3]
对于y=Xw,若X无解或有多个解,称这个问题是病态的。病态问题下,用最小二乘法求解会导致过拟合或欠拟合,用正则化来解决。
设X为m乘n矩阵:
- 过拟合模型:m<<nm<<n,欠定方程,存在多解的可能性大;
- 欠拟合模型:m>>nm>>n,超定方程,可能无解,或者有解但准确率很低
REF:
https://blog.csdn.net/darknightt/article/details/70179848
Tikhonov regularization 吉洪诺夫 正则化的更多相关文章
- matlab-罗曼诺夫斯基准则剔除粗大值
罗曼诺夫斯基准则原理 罗曼诺夫斯基准则又称 t检验准则,其特点是首先删除一个可疑的的测得值,然后按 t分布检验被剔除的测量值是否含有粗大误差 罗曼诺夫斯基准则 1)选取合适的显著度a,选择合适的数 ...
- Tikhonov regularization和岭回归
就实现过程来讲,两者是一样的,都是最小二乘法的改进,对于病态矩阵的正则化,只不过分析的角度不一样,前者是解决机器学习中过拟合问题,机器学习一般是监督学习,是从学习角度来说的,后者是数学家搞的,是为了解 ...
- 切诺夫界证明(Chernoff bound)
- 软阈值迭代算法(ISTA)和快速软阈值迭代算法(FISTA)
缺月挂疏桐,漏断人初静. 谁见幽人独往来,缥缈孤鸿影. 惊起却回头,有恨无人省. 拣尽寒枝不肯栖,寂寞沙洲冷.---- 苏轼 更多精彩内容请关注微信公众号 "优化与算法" ISTA ...
- Machine learning | 机器学习中的范数正则化
目录 1. \(l_0\)范数和\(l_1\)范数 2. \(l_2\)范数 3. 核范数(nuclear norm) 参考文献 使用正则化有两大目标: 抑制过拟合: 将先验知识融入学习过程,比如稀疏 ...
- Stanford机器学习笔记-3.Bayesian statistics and Regularization
3. Bayesian statistics and Regularization Content 3. Bayesian statistics and Regularization. 3.1 Und ...
- 柯尔莫可洛夫-斯米洛夫检验(Kolmogorov–Smirnov test,K-S test)
柯尔莫哥洛夫-斯米尔诺夫检验(Колмогоров-Смирнов检验)基于累计分布函数,用以检验两个经验分布是否不同或一个经验分布与另一个理想分布是否不同. 在进行cumulative probab ...
- [No0000119]什么是柳比歇夫的时间事件记录法
上图是我过去一年来做的时间事件记录中的某几天的记录文字.从接触到这种方法以来,也就是2009年的7月31日到今天,我已经作了一年多时间的记录.那么什么是时间事件记录?很简单,就像那两幅图片上所展示的, ...
- 正则化--L2正则化
请查看以下泛化曲线,该曲线显示的是训练集和验证集相对于训练迭代次数的损失. 图 1 显示的是某个模型的训练损失逐渐减少,但验证损失最终增加.换言之,该泛化曲线显示该模型与训练集中的数据过拟合.根据奥卡 ...
随机推荐
- PyGame实现情人节表白利器
前提:写不出那么那个的话哇,随便写写,随便看看,重在代码(文章末尾有免费完整源代码) 实验环境: pygame 1.9.4 pycharm python3.6 实现思路: pygame.display ...
- ES6常用语法(下)
Symbol类型 ES5 的对象属性名都是字符串,这容易造成属性名的冲突.比如,你使用了一个他人提供的对象,但又想为这个对象添加新的方法,新方法的名字就有可能与现有方法产生冲突.如果有一种机 ...
- flask No such command "init-db".
在Daily目录下,使用cmd窗口执行,不要使用IDE的命令行 set FLASK_APP=DLY set FLASK_ENV=development flask init_app
- zabbix回顾
1.zabbix能收集哪些信息? 磁盘空间,磁盘IO,cpu负载,内存使用情况,开机时间,网卡的网络流量,进程数等 2.zabbix支持哪些通讯方式? agent:通过专用的代理程序进行监控,是mas ...
- 使用ffmpeg进行视频封面截取
项目需求:用户上传视频格式的文件,需要转为指定编码的MP4格式(为了适应在线播放),并且截取视频的第一帧作为封面图片(用于展示) 实现: 1.下载ffmpeg.exe 地址:http://ffmpeg ...
- selenium python 中浏览器操作
1.启用浏览器 browser = webdriver.Chrome() 谷歌浏览器 browser = webdriver.Firefox() ...
- 在CentOS6.9上Shell脚本定时释放内存cache
一.写Shell脚本 mkdir -p /var/script/ vim /var/script/freemem.sh 写入以下Shell脚本: #!/bin/bash # 当前已使用的内存大小 us ...
- zookeeper图形化的客户端工具
追加一个zookeeper图形化的客户端工具: 1.zookeeper图像化客户端工具的下载地址:https://issues.apache.org/jira/secure/attachment/12 ...
- grep 从文件内容中查找
grep -rin [查找目标] [查找范围] 例子:在当前目录下的文件内查找test字符串 grep -rin test ./
- Eclipse中设置作者日期等Java注释模板
Eclipse作为JavaIDE(Integrated Development Environment,集成开发环境),可以通过设置自动添加Javadoc注释信息,如@author 作者名.@vers ...