参考:https://blog.csdn.net/young_gy/article/details/78468153

Extended Kalman Filter(扩展卡尔曼滤波)是卡尔曼滤波的非线性版本。在状态转移方程确定的情况下,EKF已经成为了非线性系统状态估计的事实标准。本文将简要介绍EKF,并介绍其在无人驾驶多传感器融合上的应用。

KF与EKF

本文假定读者已熟悉KF,若不熟悉请参考卡尔曼滤波简介

KF与EKF的区别如下:

  1. 预测未来:x′=Fx+u用x′=f(x,u)代替;其余F用Fj代替。
  2. 修正当下:将状态映射到测量的Hx′用h(x′)代替;其余H用Hj代替。

其中,非线性函数f(x,u),h(x′)用非线性得到了更精准的状态预测值、映射后的测量值;线性变换Fj,,Hj通过线性变换使得变换后的x,z仍满足高斯分布的假设。

Fj,Hj计算方式如下:

为什么要用EKF

KF的假设之一就是高斯分布的x预测后仍服从高斯分布,高斯分布的x变换到测量空间后仍服从高斯分布。可是,假如F、H是非线性变换,那么上述条件则不成立。

将非线性系统线性化

既然非线性系统不行,那么很自然的解决思路就是将非线性系统线性化。

对于一维系统,采用泰勒一阶展开即可得到:

对于多维系统,仍旧采用泰勒一阶展开即可得到:

其中,Df(a)是Jacobian矩阵。

多传感器融合

lidar与radar

本文将以汽车跟踪为例,目标是知道汽车时刻的状态

。已知的传感器有lidar、radar。

  • lidar:笛卡尔坐标系。可检测到位置,没有速度信息。其测量值

  • radar:极坐标系。可检测到距离,角度,速度信息,但是精度较低。其测量值

,图示如下。

传感器融合步骤

步骤图如上所示,包括:

  1. 收到第一个测量值,对状态xx进行初始化。
  2. 预测未来
  3. 修正当下

初始化

初始化,指在收到第一个测量值后,对状态x进行初始化。初始化如下,同时加上对时间的更新。

对于radar来说,

对于radar来说,

预测未来

预测主要涉及的公式是:

需要求解的有三个变量:F、P、Q。

F表明了系统的状态如何改变,这里仅考虑线性系统,F易得:

P表明了系统状态的不确定性程度,用x的协方差表示,这里自己指定为:

Q表明了x′=Fx未能刻画的其他外界干扰。本例子使用线性模型,因此加速度变成了干扰项。x′=Fx中未衡量的额外项目v为:

v服从高斯分布N(0,Q)。

修正当下

lidar

lidar使用了KF。修正当下这里牵涉到的公式主要是:

需要求解的有两个变量:H、R。

H表示了状态空间到测量空间的映射。

R表示了测量值的不确定度,一般由传感器的厂家提供,这里lidar参考如下:

radar

radar使用了EKF。修正当下这里牵涉到的公式主要是:

区别与上面lidar的主要有:

  1. 状态空间到测量空间的非线性映射f(x)
  2. 非线性映射线性化后的Jacob矩阵
  3. radar的

状态空间到测量空间的非线性映射f(x)如下

非线性映射线性化后的Jacob矩阵Hj

R表示了测量值的不确定度,一般由传感器的厂家提供,这里radar参考如下:

传感器融合实例

多传感器融合的示例如下,需要注意的有:

  1. lidar和radar的预测部分是完全相同的
  2. lidar和radar的参数更新部分是不同的,不同的原因是不同传感器收到的测量值是不同的
  3. 当收到lidar或radar的测量值,依次执行预测、更新步骤
  4. 当同时收到lidar和radar的测量值,依次执行预测、更新1、更新2步骤

多传感器融合的效果如下图所示,红点和蓝点分别表示radar和lidar的测量位置,绿点代表了EKF经过多传感器融合后获取到的测量位置,取得了较低的RMSE。

扩展卡尔曼滤波EKF与多传感器融合的更多相关文章

  1. Google Cardboard的九轴融合算法——基于李群的扩展卡尔曼滤波

    Google Cardboard的九轴融合算法 --基于李群的扩展卡尔曼滤波 极品巧克力 前言 九轴融合算法是指通过融合IMU中的加速度计(三轴).陀螺仪(三轴).磁场计(三轴),来获取物体姿态的方法 ...

  2. 扩展卡尔曼滤波(MRPT)

    EKF relies on a linearisation of the evolution and observation functions which are good approximatio ...

  3. Sensor fusion(传感器融合)

    From Wikipedia, the free encyclopedia 来自维基百科,免费的百科Sensor fusion is combining of sensory data or data ...

  4. 车载多传感器融合定位方案:GPS +IMU+MM

    导读 高德定位业务包括云上定位和端上定位两大模块.其中,云上定位主要解决Wifi指纹库.AGPS定位.轨迹挖掘和聚类等问题:端上定位解决手机端和车机端的实时定位问题.近年来,随着定位业务的发展,用户对 ...

  5. Sensor Fusion-based Exploration in Home Environments using Information, Driving and Localization Gains(基于传感器融合的使用信息、驾驶和定位增益在家庭环境中的探索)

    Authors: Joong-Tae Park, Jae-Bok Song Department:Department  of  Mechanical  Engineering,  Korea  Un ...

  6. 突破短板,传统桌面程序 使用webapi 扩展迎合web和移动端融合的需求

    传统桌面程序不能完全被web和移动端替代,但是需要改造.这里要说的是巧用webapi把以前用dll和com组件,ocx等方式做接口,做分布式开发的方式,改成restful 风格api的方式实现跨平台, ...

  7. SLAM+语音机器人DIY系列:(三)感知与大脑——2.带自校准九轴数据融合IMU惯性传感器

    摘要 在我的想象中机器人首先应该能自由的走来走去,然后应该能流利的与主人对话.朝着这个理想,我准备设计一个能自由行走,并且可以与人语音对话的机器人.实现的关键是让机器人能通过传感器感知周围环境,并通过 ...

  8. 卡尔曼滤波—Simple Kalman Filter for 2D tracking with OpenCV

    之前有关卡尔曼滤波的例子都比较简单,只能用于简单的理解卡尔曼滤波的基本步骤.现在让我们来看看卡尔曼滤波在实际中到底能做些什么吧.这里有一个使用卡尔曼滤波在窗口内跟踪鼠标移动的例子,原作者主页:http ...

  9. 四元数运动学笔记(5)IMU驱动的运动误差方程

    1.扩展卡尔曼滤波EKF1.1线性化卡尔曼滤波1.2偏差微分方程的推导1.3线性化卡尔曼滤波的流程1.4 离散EKF2.误差状态的运动方程2.1连续时间的IMU系统动态方程2.1.1相关变量2.1.2 ...

随机推荐

  1. I.MX6 support eMMC 5.0

    /***************************************************************************** * I.MX6 support eMMC ...

  2. cnn(卷积神经网络)比较系统的讲解

    本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之 ...

  3. Android进程间的通信

    1.概述:由于android系统中应用程序之间不能共享内存.因此,在不同应用程序之间交互数据(跨进程通讯)就稍微麻烦一些.在android SDK中提供了4种用于跨进程通讯的方式.这4种方式正好对应于 ...

  4. 剑指offer-第二章数据结构(数组,字符串,链表,树,栈与队列)及例题

    一.数组(最简单的数据结构) 定义:占据一块连续内存并按照顺序存储数据.创建时先指定大小,分配内存. 优点:时间效率高.实现简单的hash(下标为key,对应的数据为value) 缺点:空间效率差.如 ...

  5. mysql 存储过程 事务处理 (转)

    BEGIN DECLARE t_error INTEGER DEFAULT 0;  DECLARE CONTINUE HANDLER FOR SQLEXCEPTION SET t_error=1; S ...

  6. Tomcat设置欢迎页问题

    今天下载了tomat9,配置到eclipse后拉起来,想跑个欢迎页看看是否起好了,随手写了个index.jsp放到项目Struts2的WebContent根目录下,直接打开网页输入http://loc ...

  7. YUV

    https://msdn.microsoft.com/en-us/library/aa904813(VS.80).aspx

  8. win7系统清除USBSTOR记录

    方法一 1.Win+R,出现运行窗口,如图所示: 2.在输入框中输入“regedit”,如图所示: 3.进入后,点击编辑-查找,查找输入框中输入“USBSTOR”(为了加快查找速度,可以只选择“项”) ...

  9. 微信小程序之wx.requestPayment 发起微信支付

    wx.requestPayment 发起微信支付 timeStamp 时间戳 nonceStr 随机字符串 package 统一下单接口返回的 prepay_id 参数值 signType 签名算法 ...

  10. oracle里的统计信息

    1 oracle里的统计信息 Oracle的统计信息是这样的一组数据,存储在数据字典,从多个维度描述了oracle数据库对象的详细信息,有6种类型 表的统计信息:记录数.表块的数量.平均行长度等 索引 ...